Polymers and Light pp 247-290

Part of the Advances in Polymer Science book series (POLYMER, volume 168) | Cite as

Ultrashort Pulse Laser Interaction with Dielectrics and Polymers

Abstract

Femtosecond laser micromachining has excited vivid attention in various industrial fields and in medicine owing to the advantages of ultrashort laser pulses compared to long-pulse treatment. These are mainly the reduction of the laser fluence needed to induce ablation and the improvement of the contour sharpness of the laser-generated structures. Recently, special attention was paid to femtosecond laser experiments on nonabsorbing inorganic dielectrics. This is due to the fact that optical damage in dielectric optical elements limits the performance of high-power laser systems. Despite the fact that a large variety of organic polymers can be machined with excimer lasers successfully, the involvement of thermal processes can lead to an unsatisfactory quality of the structures. Ultrashort, fs-laser pulses might be an alternative for the treatment of polymers. Therefore, femtosecond laser machining investigations of dielectrics and polymers are reviewed in this paper. Similarities and differences of the ablation behavior of both material classes are discussed. The influence of the bandgap on the ablation threshold in dependence on the pulse duration, the enhancement of the machining precision with a shortening of the pulse duration, incubation phenomena, and morphological features appearing on the surface after femtosecond laser treatment are mentioned. Possible applications, e.g., in medicine and biosensors, are described.

Keywords

Ablation Dielectrics Femtosecond laser Micromachining Polymers 

Abbreviations

a

Avalanche coefficient

α

Linear absorption coefficient

αeff

Effective absorption coefficient

d

Ablation depth per pulse (=ablation rate)

D

Diameter of ablated (modified) area

δ

Thermal diffusivity

Δd

shot-to-shot deviation of d from its mean value (99 % confidence interval)

E0

Maximum energy

ET

Transmitted energy

Eth

Threshold energy

f

Focusing distance

F0

Maximum fluence

Fth

Threshold fluence

I

Intensity

l

Spatial position

λ

Center wavelength

Λ

Ripple period

n

Density of electrons

N

Number of pulses per spot

q

Lateral extension parameter

r

Spatial coordinate

R

Reflectivity

σk

k-photon absorption cross section

t

Time

τ

Pulse duration (FWHM)

θ

Angle of incidence

wo

Gaussian beam radius

x

Spatial coordinate

y

Spatial coordinate

ξ.

Incubation parameter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maiman TH (1960) Nature 187:493Google Scholar
  2. 2.
    Bäuerle D (2000) Laser processing and chemistry, 3rd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  3. 3.
    Fork RL, Greene BI, Shank CV (1981) Appl Phys Lett 38:671Google Scholar
  4. 4.
    Fork RL, Brito Cruz CH, Becker PC, Shank CV (1987) Opt Lett 12:422Google Scholar
  5. 5.
    Knox WH, Downer MC, Fork RL, Shank CV (1984) Opt Lett 9:552Google Scholar
  6. 6.
    Rolland C, Corkum PB (1986) Opt Commun 59:64Google Scholar
  7. 7.
    Spence DE, Kean PN, Sibbett W (1991) Opt Lett 16:42Google Scholar
  8. 8.
    Strickland D, Mourou G (1985) Opt Commun 56:219Google Scholar
  9. 9.
    Nisoli M, DeSilvestri S, Svelto O, Szipöcs R, Ferencz K, Spielmann C, Sartania S, Krausz F (1997) Opt Lett 22:522Google Scholar
  10. 10.
    Limpert J, Schreiber T, Clausnitzer T, Zöllner K, Fuchs HJ, Kley EB, Zellmer H, Tünnermann A (2002) Optics Express 10:628Google Scholar
  11. 11.
    Kautek W, Krüger J (1994) SPIE Proc 2207:600Google Scholar
  12. 12.
    Diels J-C, Rudolph W (1996) Ultrashort laser pulse phenomena, Academic, San DiegoGoogle Scholar
  13. 13.
    Sartania S, Cheng Z, Lenzner M, Tempea G, Spielmann C, Krausz F (1997) Opt Lett 22:1562Google Scholar
  14. 14.
    Krüger J, Kautek W (1999) Laser Physics 9:30Google Scholar
  15. 15.
    Preuss S, Demchuk A, Stuke M (1995) Appl Phys A 61:33Google Scholar
  16. 16.
    Kautek W, Krüger J (1995) Materials Science Forum 173–174:17Google Scholar
  17. 17.
    Liu JM (1982) Opt Lett 7:196Google Scholar
  18. 18.
    Baudach S, Bonse J, Kautek W (1999) Appl Phys A 69:S395Google Scholar
  19. 19.
    Preuss S, Späth M, Zhang Y, Stuke M (1993) Appl Phys Lett 62:3049Google Scholar
  20. 20.
    Bloembergen N (1974) IEEE J Quant Electron 10:375Google Scholar
  21. 21.
    Du D, Liu X, Korn G, Squier J, Mourou G (1994) Appl Phys Lett 64:3071Google Scholar
  22. 22.
    Kautek W, Krüger J, Lenzner M, Sartania S, Spielmann C, Krausz F (1996) Appl Phys Lett 69:3146Google Scholar
  23. 23.
    Stuart BC, Feit MD, Herman S, Rubenchik AM, Shore BW, Perry MD (1996) J Opt Soc Am B 13:459Google Scholar
  24. 24.
    Lenzner M, Krüger J, Sartania S, Cheng Z, Spielmann C, Mourou G, Kautek W, Krausz F (1998) Phys Rev Lett 80:4076Google Scholar
  25. 25.
    Stoian R, Boyle M, Thoss A, Rosenfeld A, Korn G, Hertel IV, Campbell EEB (2002) Appl Phys Lett 80:353Google Scholar
  26. 26.
    von der Linde D, Sokolowski-Tinten K, Bialkowski J (1997) Appl Surf Sci 109–110:1Google Scholar
  27. 27.
    Stoian R, Rosenfeld A, Ashkenasi D, Hertel IV, Bulgakova NM, Campbell EEB (2002) Phys Rev Lett 88:097603/1–4Google Scholar
  28. 28.
    Beuermann T, Brinkmann H-J, Damm T, Stuke M (1990) MRS Symp Proc 191:37Google Scholar
  29. 29.
    Matthias E, Reichling M, Siegel J, Käding OW, Petzoldt S, Skurk H, Bizenberger P, Neske E (1994) Appl Phys A 58:129Google Scholar
  30. 30.
    Vogel A, Schweiger P, Frieser A, Asiyo MN, Birngruber R (1990) IEEE J Quant Electron 26:2240Google Scholar
  31. 31.
    Küper S, Stuke M (1987) Appl Phys B 44:199Google Scholar
  32. 32.
    Srinivasan R, Sutcliffe E, Braren B (1987) Appl Phys Lett 51:1285Google Scholar
  33. 33.
    Anisimov SI, Kapeliovich B, Perel’man TL (1974) Sov Phys JETP 39:375Google Scholar
  34. 34.
    Corkum PB, Brunel F, Sherman NK (1988) Phys Rev Lett 61:2886Google Scholar
  35. 35.
    Chichkov BN, Momma C, Nolte S, von Alvensleben F, Tünnermann A (1996) Appl Phys A 63:109Google Scholar
  36. 36.
    Güdde J, Hohlfeld J, Müller JG, Matthias E (1998) Appl Surf Sci 127–129:40Google Scholar
  37. 37.
    Wellershoff S-S, Hohlfeld J, Güdde J, Matthias E (1999) Appl Phys A 69:S99.Google Scholar
  38. 38.
    Bonse J, Baudach S, Krüger J, Kautek W, Lenzner M (2002) Appl Phys A 74:19Google Scholar
  39. 39.
    Bonse J, Baudach S, Kautek W, Welsch E, Krüger J (2002) Thin Solid Films 408:297Google Scholar
  40. 40.
    Stuart BC, Feit MD, Rubenchik AM, Shore BW, Perry MD (1995) Phys Rev Lett 74:2248Google Scholar
  41. 41.
    Varel H, Ashkenasi D, Rosenfeld A, Herrmann R, Noack F, Campbell EEB (1996) Appl Phys A 62:293Google Scholar
  42. 42.
    Lenzner M, Krüger J, Kautek W, Krausz F (1999) Appl Phys A 68:369Google Scholar
  43. 43.
    Lenzner M, Krüger J, Kautek W, Krausz F (2000) Appl Surf Sci 154–155:11.Google Scholar
  44. 44.
    Tien A-C, Backus S, Kapteyn H, Murnane M, Mourou G (1999) Phys Rev Lett 82:3883Google Scholar
  45. 45.
    Lenzner M, Krüger J, Kautek W, Krausz F (1999) Appl Phys A 69:465Google Scholar
  46. 46.
    Krüger J, Kautek W (1996) Appl Surf Sci 96–98:430Google Scholar
  47. 47.
    von Allmen M, Blatter A (1995) Laser beam interaction with materials, 2nd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  48. 48.
    Lenzner M (1999) J Mod Phys B 13:1559Google Scholar
  49. 49.
    Henyk M, Vogel N, Wolfframm D, Tempel A, Reif J (1999) Appl Phys A 69:S355Google Scholar
  50. 50.
    Srinivasan R, Mayne-Banton V (1982) Appl Phys Lett 41:576Google Scholar
  51. 51.
    Endert H, Pätzel R, Basting D (1995) Opt Quantum Electron 27:1319Google Scholar
  52. 52.
    Beinhorn F, Ihlemann J, Luther K, Troe J (1999) Appl Phys A 68:709Google Scholar
  53. 53.
    Arenholz E, Wagner M, Heitz J, Bäuerle D (1992) Appl Phys A 55:119Google Scholar
  54. 54.
    Arenholz E, Kirchebner A, Klose S, Heitz J, Bäuerle D (1998) Mater Res Soc Symp Proc 526:385Google Scholar
  55. 55.
    Krajnovich DJ, Vazquez JE (1993) J Appl Phys 73:3001Google Scholar
  56. 56.
    Lippert T, Dickinson JT, Langford SC, Furutani H, Fukumura H, Masuhara H, Kunz T, Wokaun A (1998) Appl Surf Sci 127–129:117Google Scholar
  57. 57.
    Kumagai H, Midorikawa K, Toyoda K, Nakamura S, Okamoto T, Obara M (1994) Appl Phys Lett 65:1850Google Scholar
  58. 58.
    Heitz J, Arenholz E, Bäuerle D, Sauerbrey R, Phillips HM (1994) Appl Phys A 59:289Google Scholar
  59. 59.
    Nakamura S, Midorikawa K, Kumagai H, Obara M, Toyoda K (1996) Jpn J Appl Phys 35:101Google Scholar
  60. 60.
    Serafetinidis AA, Skordoulis CD, Makropoulou MI, Kar AK (1998) Appl Surf Sci 135:276Google Scholar
  61. 61.
    Hopp B, Toth Z, Gal K, Mechler A, Bor Z, Moustaizis SD, Georgiou S, Fotakis C (1999) Appl Phys A 69:S191Google Scholar
  62. 62.
    Baudach S, Bonse J, Krüger J, Kautek W (2000) Appl Surf Sci 154–155:555Google Scholar
  63. 63.
    Niino H, Ihlemann J, Ono S, Yabe A (2000) J Photopolym Sci Technol 13:167Google Scholar
  64. 64.
    Niino H, Yabe A (2001) J Photopolym Sci Technol 14:197Google Scholar
  65. 65.
    Zhang Y, Lowe RM, Harvey E, Hannaford P, Endo A (2002) Appl Surf Sci 186:345Google Scholar
  66. 66.
    Baudach S, Krüger J, Kautek W (2001) Review Laser Eng 29:705Google Scholar
  67. 67.
    Baudach S (2001) PhD thesis, University of Technology, BerlinGoogle Scholar
  68. 68.
    Jee Y, Becker MF, Walser RM (1988) J Opt Soc Am B 5:648Google Scholar
  69. 69.
    Kunz T, Stebani J, Ihlemann J, Wokaun A (1998) Appl Phys A 67:347Google Scholar
  70. 70.
    Himmelbauer M, Arenholz E, Bäuerle D, Schilcher K (1996) Appl Phys A 63:337Google Scholar
  71. 71.
    Herman PR, Marjoribanks RS, Oettl A, Chen K, Konovalov I, Ness S (2000) Appl Surf Sci 154–155:577Google Scholar
  72. 72.
    Korte F, Nolte S, Chichkov BN, Bauer T, Kamlage G, Wagner T, Fallnich C, Welling H (1999) Appl Phys A 69:S7Google Scholar
  73. 73.
    Haight R, Hayden D, Longo P, Neary T, Wagner A (1998) SPIE Proc 3546:477Google Scholar
  74. 74.
    Shani Y, Melnick I, Yoffe S, Sharon Y, Lieberman K, Terkel H (1998) SPIE Proc 3546:112Google Scholar
  75. 75.
    Stern D, Schoenlein RW, Puliafito CA, Dobi ET, Birngruber R, Fujimoto JG (1989) Arch Ophthalmol 107:587Google Scholar
  76. 76.
    Kautek W, Mitterer S, Krüger J, Husinsky W, Grabner G (1994) Appl Phys A 58:513Google Scholar
  77. 77.
    König K, Riemann I, Fritzsche W (2001) Opt Lett 26:819Google Scholar
  78. 78.
    von Woedtke T, Abel P, Krüger J, Kautek W (1997) Sens Actuators B Chem 42:151Google Scholar
  79. 79.
    Neev J, Da Silva LB, Feit MD, Perry MD, Rubenchik AM, Stuart BC (1996) IEEE J Sel Top Quant Electron 2:790Google Scholar
  80. 80.
    Kohns P, Zhou P, Störmann R (1997) J Laser Appl 9:171Google Scholar
  81. 81.
    Krüger J, Kautek W, Newesely H (1999) Appl Phys A 69:S403Google Scholar
  82. 82.
    Serbin J, Bauer T, Fallnich C, Kasenbacher A, Arnold WH (2002) Appl Surf Sci 197–198:737Google Scholar
  83. 83.
    Juhasz T, Loesel FH, Kurtz RM, Horvath C, Bille JF, Mourou G (1999) IEEE J Sel Top Quant Electron 5:902Google Scholar
  84. 84.
    Juhasz T, Djotyan G, Loesel FH, Kurtz RM, Horvath C, Bille JF, Mourou G (2000) Laser Phys 10:495Google Scholar
  85. 85.
    Biowski R, Homolka P, Barisani-Asenbauer T, Baumgartner I, Husinsky W, Kaminski S, Lametschwandtner A, Muss W, Grabner G (2000) J Refract Surg 16:23Google Scholar
  86. 86.
    Husinsky W, Mitterer S, Grabner G, Baumgartner I (1989) Appl Phys B 49:463Google Scholar
  87. 87.
    Altmann J, Grabner G, Husinsky W, Mitterer S, Baumgartner I, Skorpik F, Asenbauer T (1991) J Refract Surg 7:377Google Scholar
  88. 88.
    Husinsky W, Mitterer S, Altmann J, Grabner G, Baumgartner I, Skorpik F, Asenbauer T (1991) J Refract Surg 7:385Google Scholar
  89. 89.
    Müller GJ, Müller-Stolzenburg N (1989) Biotronic 1:55Google Scholar
  90. 90.
    Müller-Stolzenburg N, Müller GJ, Buchwald HJ, Schründer S (1990) Arch Ophthalmol 108:915Google Scholar
  91. 91.
    Gruber D, Husinsky W, Grabner G, Baumgartner I, Scholmann J, Krüger J, Kautek W (1996) In: Waidelich W, Staehler G, Waidelich R (eds) Lasers in medicine. Springer, Berlin Heidelberg New York, p 397Google Scholar
  92. 92.
    Loesel FH, Niemz MH, Bille JF, Juhasz T (1996) IEEE J Quant Electron 32:1717Google Scholar
  93. 93.
    Loesel FH, Tien AC, Backus S, Kapteyn H, Murnane M, Kurtz RM, Sayegh S, Juhasz T (1998) SPIE Proc 3565:116Google Scholar
  94. 94.
    Cefalas AC, Sarantopoulou E, Argitis P, Gogolides E (1999) Appl Phys A 69:S929Google Scholar
  95. 95.
    Zhang J, Sugioka K, Takahashi T, Toyoda K, Midorikawa K (2000) Appl Phys A 71:23Google Scholar
  96. 96.
    Schäfer D, Ihlemann J, Marowsky G, Herman PR (2001) Appl Phys A 72:377Google Scholar
  97. 97.
    Cefalas AC, Sarantopoulou E, Kollia Z (2001) Appl Phys A 73:571Google Scholar
  98. 98.
    Russo RE, Mao XL, Borisov OV, Liu HC (2000) J Anal At Spectrom 15:1115Google Scholar
  99. 99.
    Basting D, Stamm U (2001) Z Phys Chem 215:1575Google Scholar
  100. 100.
    Dyer PE, Maswadi SM, Walton CD, Ersoz M, Fletcher PDI, Paunov VN (2003) Appl Phys A 77:391Google Scholar

Copyright information

Authors and Affiliations

  1. 1.Laboratory for Thin Film TechnologyFederal Institute for Materials Research and Testing BerlinGermany

Personalised recommendations