Fundamentals of Optical Telescopes

  • Jingquan Cheng
Part of the Astrophysics and Space Science Library book series (ASSL, volume 360)

This chapter provides a general overview of optical telescope history, astronomical requirements, optical aberrations, optical telescope system design, and modern optical theory. In this chapter, important optical concepts such as angular resolution, light collecting power, field of view, telescope efficiency, atmospheric seeing, geometrical aberrations, wavefront error, ray tracing, merit function, optical and modulation transfer function, point spread function, Strehl ratio, and imaging spatial frequency are introduced. The concept discussions are arranged in a systematic way so that readers can learn step-by-step. The chapter provides many important formulas of optical system design and evaluation. Emphases are placed on both the traditional geometric aberrational theory and the modern optical theory. At the end of the chapter, image properties of a segmented mirror system are also discussed in detail.


  1. Anderson, G. and Tullson, D., 2006, Photon sieve telescope, SPIE Proc., 6265, 626523.CrossRefGoogle Scholar
  2. Bahner, K., 1968, Large and very large telescope projects and consideration, ESO Bulletin, No. 5.Google Scholar
  3. Barlow, B. V., 1975, The astronomical telescope, Wykeham Publications (London) Ltd, London.Google Scholar
  4. Baum, W. A., 1962, The detection and measurement of faint astronomical sources, in Astronomical techniques, ed. Hiltner, WA,, Astronomical Techniques, Chicago.Google Scholar
  5. Born, M. and Wolf, E., 1980, Principles of optics, 6th ed. Pergamon Press, Oxford.Google Scholar
  6. Bowen, I. S., 1964, Telescopes, AJ, 69, 816.CrossRefADSGoogle Scholar
  7. Cao, C., 1986, Optical system for large field telescopes, Conference on large field telescope design, Nanjing Astronomical Instrument Institute, Nanjing.Google Scholar
  8. Cheng, J., 1988, Field of view, star guiding and general design of large Schmidt telescope, Proceedings of ESO conference on VLT and their instruments, Munich, Germany.Google Scholar
  9. Cheng, J. and Liang, M., 1990, High image quality Mersenne-Schmidt telescope, SPIE Proc. Adv. Technol. Telescope (IV), 1236, p243–249.Google Scholar
  10. Dalrymple, N. E., 2002, Mirror seeing, ATST project CDR report #0003, NOAO.Google Scholar
  11. Dawe, J. A., 1984, The determination of the vignetting function of a Schmidt telescope, in Astronomy with Schmidt telescopes, ed. Capaccioli, M, E. Reidel Pub. Co., Dordrecht.Google Scholar
  12. Dierickx, P., et al., 2004, OWL phase A, status report, Proc. SPIE, 5489, 391.Google Scholar
  13. Disney, M. J., 1972, Optical arrays, Mon. Not. RAS., 160, 213–232.CrossRefADSGoogle Scholar
  14. Disney, M. J., 1978, Optical telescope of the future, ESO Conf. Proc. 23, 145–163.Google Scholar
  15. Emerson, D., 2005, Lecture notes of NRAO summer school on radio interferometry, National radio astronomy observatory.Google Scholar
  16. Foy, R. and Labeyrie, A., 1985, Feasibility of adaptive telescope with laser probe, Astron. Astrophys., 152, L29.ADSGoogle Scholar
  17. Gascoigne, C. S. R., 1968, Some recent advances in the optics of large telescopes, Quart. J. RAS., 9, 18.Google Scholar
  18. Gascoigne, C. S. R., 1973, Recent advances in astronomical optics, Appl. Opt., 12, 1419.CrossRefADSGoogle Scholar
  19. Glassner, A. S., 1989, An introduction to ray tracing, Academic Press, London.MATHGoogle Scholar
  20. Gramham Smith, F., and Thompson, J. H., 1988, Optics, 2nd edition, John Wiley & Sons Ltd., New York.Google Scholar
  21. Hecht, H. and Zajac, A., 1974, Optics, Addison-Wesley Pub. Co, London.Google Scholar
  22. Jiang, S. 1986, Review of multi-object spectroscope, Conference on large field telescope, Nanjing Astronomical Instrument Institute, Nanjing.Google Scholar
  23. Kraus, J. D., 1986, Radio astronomy, Cygnus-Quasar Books, Powell, Ohio.Google Scholar
  24. Learner, R., 1980, Astronomy through the telescope, Evans Brothers, London.Google Scholar
  25. Liang, M., et al., 2005, The LSST optical system, Bull. Am. Astron. Soc., 37, 2005.Google Scholar
  26. Lo, A. S. and Arenberg, J., 2006, New architectures for space astronomical telescopes using Fresnel optics, SPIE Proc., 6265, 626522.CrossRefGoogle Scholar
  27. Pawsey, J. L., Payne-Scott, R. and McCready, L. L., 1946, Radio frequency energy from the sun, Nature, 157, 158.CrossRefADSGoogle Scholar
  28. Racine, R., 1984, Astronomical seeing at Mauna Kea and in particular at the CFHT, IAU Colloq. No. 79, 235.ADSGoogle Scholar
  29. Reynolds, G. O., et al., 1989, The new physical optics notebook: tutorials in Fourier optics, SPIE Press,Google Scholar
  30. Roddier, F., 1979, Effect of atmosphere turbulence on the formation of infrared and visible images, J. of optics, 10, 299–303.Google Scholar
  31. Roddier, F., 1984, Measuring atmospheric seeing, in IAU Colloq. No. 79, eds. Ulrich MH and Kjar K, Garching bei Munchen, Germany.Google Scholar
  32. Schnapf, J. L. and Baylor, D. A., 1987, How photoreceptor cells respond to light, Sci. Am., 256, 40–47.CrossRefGoogle Scholar
  33. Schroeder, D. J., 2000, Astronomical optics, Academic Press, San Diego.Google Scholar
  34. Shao, L.-Z. and Su, D.-Q., 1983, Improvement of chromatic aberration of an aspherical plate corrector for prime focus, Opt. Acta, 30, 1267–1272.CrossRefGoogle Scholar
  35. Slyusarev, G. G., 1984, Aberration and optical design theory, 2nd ed. Adam Hilger Ltd., Bristol.Google Scholar
  36. Steward, E. G., 1983, Fourier optics: an introduction, Ellis Horwood Limited, Chichester.Google Scholar
  37. Stoltzmann, D. E., 1983, Resolution criteria for diffraction-limited telescopes, Sky Telescope, 65, 176–181.Google Scholar
  38. Su, D.-Q., 1963, Discussion on corrector design for reflecting telescope system, Acta Astron, 11.Google Scholar
  39. Su, D.-Q., et al., 1967, Automatic design of corrector system for Cassegrain telescopes, Acta Astron, 17.Google Scholar
  40. Su, D.-Q. and Wang, Y.-L., 1974, Optimization of aberrations for astronomical optical system, Acta Astron, 15.Google Scholar
  41. Su, D.-Q. and Wang, L.-J., 1982, A flat-field reflecting focal reducer, Opt. Acta, 29, 391–394.CrossRefADSGoogle Scholar
  42. Su, D.-Q., et al., 1983, Spot diagram and lest square optimization, Nanjing Astronomical Instrument Institute, Nanjing.Google Scholar
  43. Vernin, J., 1986, Astronomical site selection, a new meteorological approach, SPIE Proc., 628, 142.CrossRefADSGoogle Scholar
  44. Wetherell, W. B., 1974, Image quality criteria for the Large Space Telescope, in Space optics, eds. Thompson B. J. and Shannon R. R., National Academy of Science, Washington.Google Scholar
  45. Wetherell, W. B., 1980, The calculation of image quality, in Applied optics and optical engineering, Vol. 8, Academic Press, New York.Google Scholar
  46. Willstroop, R. V., 1984, The Mersenne-Schmidt telescope, in IAU Colloq. No. 79, eds. Ulrich M. H. and Kjar K., Garching bei Munchen, Germany.Google Scholar
  47. Wilson, R. N, 1968, Corrector systems for Cassegrain telescopes, Appl. Opt., 7, 253–263.CrossRefADSGoogle Scholar
  48. Wilson, R. N, 2004, Reflecting telescope optics I, 2nd ed. Springer, Berlin.Google Scholar
  49. Wynne, C. G., 1967, Afocal correctors for Paraboloidal mirrors, Appl. Opt., 6, 1227–1231.CrossRefADSGoogle Scholar
  50. Yaitskova, N., et al., 2003, Analytical study of diffraction effects in extremely large segmented telescopes, J. Opt. Soc. Am. A, 20, 1563–1575.CrossRefADSGoogle Scholar
  51. Yi, M., 1982, Design of aspherical correctors for Cassegrain system, Acta Astron., 23, 398.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jingquan Cheng
    • 1
  1. 1.National Radio Astronomy ObservatoryCharlottesvilleUSA

Personalised recommendations