Naturally occurring non-porphyrin iron compounds

  • J. B. Neilands
Conference paper
Part of the Structure and Bonding book series (STRUCTURE, volume 1)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrams, A., P. H. Lowy, and H. Borsook: Preparation of 1-amino-1-deoxy-2-ketohexoses from aldohexoses and alpha amino acids. J. Am. Chem. Soc. 77, 4794 (1955).Google Scholar
  2. 2.
    Anderegg, G., F. l’Eplattenier, and G. Schwarzenbach: Hydroxamate Complex, III. Iron (III) exchange between sideramins and complexones. Helv. Chim. Acta 46, 1409 (1963).Google Scholar
  3. 3.
    Anderson, G. W., J. E. Zimmermann and F. M. Callahan: The use of esters of N-hydroxysuccinamide in peptide synthesis. J. Am. Chem. Soc. 86, 1839 (1964).Google Scholar
  4. 4.
    Anderson, J. H.: The metabolism of hydroxylamine to nitrite by Nitrosomonas. Biochem. J. 91, 8 (1964).Google Scholar
  5. 5.
    Ballio, A., S. Barcellona, E. B. Chain, A. Tonolo and L. Vero-Barcellona: A nitrosophenol cobalt chelate produced by a streptomycete. Proc. Roy. Soc. B 161, 384 (1964).Google Scholar
  6. 6.
    —, H. Bertholdt, A. Carilli, E. B. Chain, V. D. Vittorio, A. Tonolo and L. Vero-Barcellona: Studies on ferroverdin, a green iron-containing pigment produced by a Streptomyces Wak. species. Proc. Roy. Soc. B 158, 43 (1963).Google Scholar
  7. 7.
    Bates, R. B., J. H. Schauble and M. Soucek: The C10H17 side chain in mycelianamide. Tetrahedron Letters 1683 (1963).Google Scholar
  8. 8.
    Bickel, H., R. Bosshardt, E. Gaumann, P. Reusser, E. Vischer, W. Voser, A. Wettstein and H. Zahner: Metabolic products of actinomycetes, 26. On the isolation and characterization of ferrioxamine A-F, new growth factors of the sideramine group. Helv. Chim. Acta 43, 2118 (1960).Google Scholar
  9. 9.
    —, B. Fechtig, G. E. Hall, W. Keller-Schierlein, V. Prelog and E. Vischer: Metabolic products of actinomycetes, 24. On the isolation and synthesis of 1-amino-5-hydroxyaminopentane, a primary hydrolysis product of ferrioxamine and ferrimycin. Helv. Chim. Acta 43, 901 (1960).Google Scholar
  10. 10.
    —, E. Gaumann, G. Nussberger, P. Reusser, E. Vischer, W. Vosser, A. Wettstein and H. Zahner: Metabolic products of actinomycetes, 25. On the isolation and characterization of ferrimycin A1 and A2, new antibiotics of the sideromycin group. Helv. Chim. Acta 43, 2105 (1960).Google Scholar
  11. 11.
    —, G. E. Hall, W. Keller-Schierlein, V. Prelog, E. Vischer and A. Wettstein: Metabolic products of actinomycetes, 27. On the constitution of ferrioxamine B. Helv. Chim. Acta 43, 2129 (1960).Google Scholar
  12. 12.
    Birch, A. J., R. J. English, R. A. Massy-Westropp and H. Smith: Studies in relation to biosynthesis, 15. Origin of terpenoid structures in mycelianamide and mycophenolic acid. J. Chem. Soc. 369 (1958).Google Scholar
  13. 13.
    Birch, A. J., M. Kocor, N. Sheppard and J. Winter: Studies in relation to biosynthesis, 29. The terpenoid chain of mycelianamide. J. Chem. Soc. 1502 (1962).Google Scholar
  14. 14.
    Birch, A. J., R. A. Massy-Westropp and R. W. Rickards: Studies in relation to biosynthesis, 8. The structure of mycelianamide. J. Chem. Soc., 3717 (1956).Google Scholar
  15. 15.
    Birch, A. J. and H. Smith: Ciba Foundation Symposium on Peptide Antibiotics, Little, Brown & Co., p. 247 (1958).Google Scholar
  16. 16.
    Birkinshaw, J. H., and A. M. L. Dryland: Biosynthesis of β-nitropropionic acid by the mould Penicillium atrovenetum. Biochem. J. 93, 478 (1964).Google Scholar
  17. 17.
    Blatt, A. H.: Organic syntheses. Coll. Vol. II. John Wiley & Sons, New York., p. 69 (1943).Google Scholar
  18. 18.
    Booth, J. and E. Boyland: The biochemistry of aromatic amines. Biochem J. 91 362 (1964).Google Scholar
  19. 19.
    Boyland, E. and R. Nery: Dihydroxyurea Nature 203, 1379 (1964).Google Scholar
  20. 20.
    Briggs, D. E. and D. J. Millin: Hydroxamate formation and proteolysis. Biochem. J. 92, 62 p. (1964).Google Scholar
  21. 21.
    Brown, D. D. and M. W. Kies: The mammalian metabolism of l-histidine. J. Biol. Chem. 234, 3182 (1959).Google Scholar
  22. 22.
    Bruice, T. C. and L. R. Fedor: O vs N attack of hydroxylamine on n-butyl thiolactate and the stablishment that N-attack passes through a metastable intermediate. J. Am. Chem. Soc. 86, 739 (1964).Google Scholar
  23. 23.
    Burnham, B. F. and J. B. Neilands: Studies on the metabolic function of the ferrichrome compounds. J. Biol. Chem. 236, 554 (1961).Google Scholar
  24. 24.
    Burton, M. O.: Characteristics of bacteria requiring the Terregens Factor. Can. J. Microbiol. 3, 107 (1957).Google Scholar
  25. 25.
    —, F. J. Sowden and A. G. Lochhead: Studies on the isolation and nature of the Terregens Factor. Can. J. Biochem. Physiol. 32, 400 (1954).Google Scholar
  26. 26.
    Charley, P. J., B. Sarkar, C. F. Stitt and P. Saltman: Chelation of iron by surgars. Biochem. Biophys. Acta 69, 313 (1963).Google Scholar
  27. 27.
    Cook, A. H. and C. A. Slater: Metabolism of wild yeasts. I Nature of pulcherrimin. J. Inst. Brewing 60, 213 (1954).Google Scholar
  28. 28.
    Cook, A. H. and C. A. Slater: Pulcherrimin. A synthesis of 1,4-dihydroxy-2,5-diketopiperazines. J. Chem. Soc. 4130 (1956).Google Scholar
  29. 29.
    Cook, A. H. and C. A. Slater: The structure of pulcherrimin. J. Chem. Soc. 4133 (1956).Google Scholar
  30. 30.
    Dunn, G., J. J. Gallagher, G. T. Newbold and D. S. Spring: Aspergillic Acid. Part. I. J. Chem. Soc. S 126 (1949).Google Scholar
  31. 31.
    Dunn, G., G. T. Newbold and F. S. Spring: Aspergillic acid, Part II. J. Chem. Soc. S 131 (1949).Google Scholar
  32. 32.
    Dutcher, J. D.: Aspergillic acid: An antibiotic substance produced by Aspergillius flavus. I General properties. J. Biol. Chem. 171, 321 (1947).Google Scholar
  33. 33.
    -: Aspergillic acid: An antibiotic substance produced by Aspergillus flavus. II Bromination reactions and reduction with sodium and alcohol. J. Biol. Chem. 171, 341 (1947).Google Scholar
  34. 34.
    -: Aspergillic acid: An antibiotic substance produced by Aspergillus flavus. III The structure of hydroxyaspergillic acid. J. Biol. Chem. 232, 785 (1958).Google Scholar
  35. 35.
    Dutta, R. L.: Metal complexes of hydroxamic acids. Colored complexes of iron, vanadium and molybdenum with isonicotinohydroxamic acids and their analtyical uses. J. Ind. Chem. Soc. 36, 285 (1959).Google Scholar
  36. 36.
    Ehrenberg, A.: Magnetic properties of ferrichrome and ferroverdin. Nature, 178, 379 (1956).Google Scholar
  37. 37.
    Emery T.: Aspartase catalyzed synthesis of N-hydroxyaspartic acid. Biochemistry 2, 1041 (1963).Google Scholar
  38. 38.
    -: Isolation, characterization and properties of fusarinine, a delta hydroxamic acid derivative of ornithine. Biochemistry 4, 1410 (1965).Google Scholar
  39. 39.
    — and J. B. Neilands: Theiron-binding center of ferrichrome compounds. Nature 184, 1632 (1959).Google Scholar
  40. 40.
    — Contribution to the structure of the ferrichrome compounds: characterization of the acyl moieties of the hydroxamate functions. J. Am. Chem. Soc. 82, 3658 (1960).Google Scholar
  41. 41.
    —: Periodate oxidation of hydroxylamine derivatives. Products, scope and application. J. Am. Chem. Soc. 82, 4903 (1960).Google Scholar
  42. 42.
    —: Structure of the ferrichrome compounds. J. Am. Chem. Soc. 83, 1626 (1961).Google Scholar
  43. 43.
    —: Further observations concerning the periodic acid oxidation of hydroxylamine derivatives. J. Org. Chem. 27, 1075 (1962).Google Scholar
  44. 44.
    Francis, J., H. M. Macturk, S. Madinaveitia and G. A. Snow: Mycobactin, a growth factor for Mycobacterium johnei, I. Isolation from Mycobacterium phlei. Biochem. J. 55, 596 (1953).Google Scholar
  45. 45.
    Gallup, P. M., S. Seifter, M. Lukin and E. Meilman: Application of the Lossen rearrangement of dinitrophenylhydroxamates to analysis of carboxyl groups in model compounds and gelatin. J. Biol. Chem. 235, 2619 (1950).Google Scholar
  46. 46.
    Garibaldi, J. A. and J. B. Neilands: Isolation and properties of ferrichrome A. J. Am. Chem. Soc. 77, 2429 (1955).Google Scholar
  47. 47.
    —: Formation of iron-binding compounds by microorganisms. Nature 177, 526 (1956).Google Scholar
  48. 48.
    Gipson, R. M., F. H. Pettit, C. G. Skinner and W. Shive: Catalytic hydrogenolysis of hydroxamic acids to amides. J. Org. Chem. 28, 1426 (1963).Google Scholar
  49. 49.
    Gordon, J. J., B. K. Kelly and G. A. Miller: Actinonin: An antibiotic substance produced by an actinomycete. Nature 195, 701 (1962).Google Scholar
  50. 50.
    Groger, D., D. Erge and G-H. Floss: On the biosynthesis of 2,3-dihydroxy-benzoic acid in submerged cultures of Claviceps paspali Stevens et Hall. Z. Naturforsch. 20 (b), 856 (1965).Google Scholar
  51. 51.
    Haskell, T. H., R. H. Bunge, J. C. French and Q. R. Bartz: Succinimycin, a new iron-containing antibiotic. J. Antibiotics (Japan) Ser. A, 16, 67 (1963).Google Scholar
  52. 52.
    Hesseltine, C. W., C. Pidacks, A. R. Whitehill., N. Bohonos, B. L. Hutchings and J. H. Williams: Coprogen, a new growth factor for coprophilic fungi. J. Am. Chem. Soc. 74, 1362 (1952).Google Scholar
  53. 53.
    Hoffmann, E. and I. Faiferman: A peptide synthesis via hydroxamic acids. J. Org. Chem. 29, 748 (1964).Google Scholar
  54. 54.
    Ito, T and J. B. Neilands: Products of “low iron fermentation” with Bacillus subtilis. Isolation, characterization and synthesis of 2,3-dihydroxybenzoyl glycine. J. Am. Chem. Soc. 80, 4645 (1958).Google Scholar
  55. 55.
    Kaczka, E. A., C. O. Gitterman, E. L. Dulaney and K. Folkers: Hadacidin, a new growth inhibitory substance in human tumor systems. Biochemistry 1, 340 (1962).Google Scholar
  56. 56.
    Keberle, H.: The biochemistry of desferrioxamine and its relation to iron metabolism. Ann. N. Y. Acad. Sci. 119, 758 (1964).Google Scholar
  57. 57.
    Keller-Schierlein, W: Metabolic products of microorganisms, 45. On the constitution of ferrirubin, ferrirhodin and ferrichrome A. Helv. Chim. Acta 46, 1920 (1963).Google Scholar
  58. 58.
    — and A. Deer: Metabolic products of microorganisms, 44. On the constitution of ferrichrysin and ferricrocin. Helv. Chim. Acta 46, 1907 (1963).Google Scholar
  59. 59.
    —, P. Mertens, V. Prelog and A. Walser: Metabolic products of microorganisms, 48. The ferrioxamines A1, A2 and D2. Helv. Chim. Acta 48, 710 (1965).Google Scholar
  60. 60.
    — and V. Prelog: Metabolic products of actinomycetes, 29. The constitution of ferrioxamine. D1. Helv. Chim. Acta 44, 709 (1961).Google Scholar
  61. 61.
    —: Metabolic products of actinomycetes, 30. On ferrioxamine E; a contribution to the constitution of the nocardamins. Helv. Chim. Acta 44, 1981 (1961).Google Scholar
  62. 62.
    —: Metabolic products of actinomycetes, 34. Ferrioxamine G. Helv. Chim. Acta 45, 590 (1961).Google Scholar
  63. 63.
    — and H. Zahner: Siderochrome. Natural iron (III) hydroxamate complex. Prog. Chem. Org. Nat. Prod. 22, 279 (1964).Google Scholar
  64. 64.
    Klein, M.: Unpublished experiments.Google Scholar
  65. 65.
    Kluyver, A. J. J. P. Van der Walt and A. J. Van Triet: Pulcherrimin, the pigment of Candida pulcherrima. Proc. Natl. Acad. Sci. U. S. 39, 583 (1953).Google Scholar
  66. 66.
    Kornblum, N.: Nitro compounds. Organic Reactions 12, 101 (1962).Google Scholar
  67. 67.
    Kuehl, F. A. M. N. Bishop, L. Chaiet and K. Folkers: Isolation and some chemical properties of grisein. J. Am. Chem. Soc. 73, 1770 (1951).Google Scholar
  68. 68.
    Lempert, K., J. Nyitrai, P. Sohar and K. Zauer: Hydantoins, thiohydantoins and glycocyamidines. Tetrahedron Letters 2679, (1964).Google Scholar
  69. 69.
    Lipman, F. and L. C. Tuttle: A specific micromethod for the determination of acyl phosphate. J. Biol. Chem. 159, 21 (1945).Google Scholar
  70. 70.
    Lochhead, A. G. O. M. Burton and R. H. Thexton: A bacterial growth factor synthesized by a soil bacterium. Nature 170, 282 (1952).Google Scholar
  71. 71.
    Lyr, H. On knowledge of the nutrition-physiology of the genus Pilobolus. Arch. Microbiol. 19, 402 (1953).Google Scholar
  72. 72.
    MacDonald, J. C.: Biosynthesis of hydroxyaspergillic acid. J. Biol. Chem. 237, 1977 (1962).Google Scholar
  73. 73.
    -: The structure of pulcherriminic acid. Can. J. Chem. 41, 165 (1963).Google Scholar
  74. 74.
    -: Biosynthesis of pulcherriminic acid. Biochem. J. 86, 533 (1965).Google Scholar
  75. 75.
    —, R. G. Micetich and R. H. Haskins: Antibiotic activity of neoaspergillic acid. Can. J. Microbiol. 10, 90 (1964).Google Scholar
  76. 76.
    Marchal, J-G.: Extraction of microbial pigments. Trav. Lab. Microbiol. Fac. Pharm., Nancy, 18, 15 (1956).Google Scholar
  77. 77.
    Marchal, J-G.: Personal communication (1965).Google Scholar
  78. 78.
    Masaki, M. and M. Ohta: Synthesis of homologues of aspergillic acid. J. Org. Chem. 29, 3165 (1964). See also: Masaki, M., Chigura, Y., Sugiyama, M. and Ohta, M. Synthesis of neoaspergillic acid. Tetrahedron Letters, 4837 (1965).Google Scholar
  79. 79.
    Mathis, F.: The hydroxamic acids. Bull. Soc. Chim. France D9–D22 (1953).Google Scholar
  80. 80.
    Mego, J. L. The effect of hadacidin on chloroplast development in nondividing Euglena cells. Biochem. Biophys. Acta 79, 221 (1964).Google Scholar
  81. 81.
    Mikes, O. and J. Turkova: Hydroxamates and their iron complexes, a new type of natural product. Chem. Listy 58, 65 (1964).Google Scholar
  82. 82.
    Nakamura, S. and T. Shiro: Studies on growth inhibition of hiochi bacteria, specific saprophytes of sake, V. Muta-aspergillic acid as a new growth inhibitor of hiochi bacteria. Agr. Biol. Chem. (Tokyo) 25, 573 (1961).Google Scholar
  83. 83.
    Nakayama, K., Z. Sato and S. Kinoshita: Growth of a glutamic acid producing bacterium and related bacteria, I. Effect of iron salts, ferrichrome, amino acids and some other compounds. J. Gen. Appl. Microbiol. 10, 143 (1964).Google Scholar
  84. 84.
    — , H. Tanaka and S. Kinoshita: Growth of a glutamic acid producing bacterium and related bacteria, II. Effect of chelating agents and its relation to inorganic salts. J. Gen. Appl. Microbiol. 10, 181 (1964).Google Scholar
  85. 85.
    Neilands, J. B.: A crystalline organo-iron pigment from a fungus, Ustilago sphaerogena. J. Am. Chem. Soc. 74, 4846 (1952).Google Scholar
  86. 86.
    -: Some aspects of microbial iron metabolism. Bact. Rev. 21, 101 (1957).Google Scholar
  87. 87.
    — Biochemistry of the ferrichrome compounds. Experentia Suppl. IX, 22 (1964).Google Scholar
  88. 88.
    Neilands, J. B.: Unpublished research.Google Scholar
  89. 89.
    — and P. Azari: Synthesis and reaction of the α-N-hydroxyamino acids. Acta Chem. Scand. 17, S 190 (1963).Google Scholar
  90. 90.
    Newbold, G. T., W. Sharp and F. S. Spring: Aspergillic acid, Part III. The synthesis of deoxyaspergillic acid. J. Chem. Soc. 2679 (1951).Google Scholar
  91. 91.
    Newbold, G. T., and F. S. Spring: Pyrazine derivatives, Part II. A synthesis of racemic 2-hydroxy-3,6-disecbutylpyrazine and its relationship to deoxyaspergillic acid. J. Chem. Soc. 373 (1947).Google Scholar
  92. 92.
    Ohta, A.: Synthesis of pulcherrimin and pulcherriminic acid. Chem. Pharm. Bull. (Tokyo) 12, 125 (1964).Google Scholar
  93. 93.
    Ollis, W. D., A. J. East, J. J. Gordon and I. O. Sutherland: The constitution of actinonin. Symposium on microbiology, Tokyo. p. 204 (1964).Google Scholar
  94. 94.
    Oxford, A. E. and H. Raistrick: Studies on the biochemistry of microorganisms, 76. Mycelianamide, C22H28O5N2, a metabolic product of Penicillium griseofulvum, Part. I. Preparation, properties and breakdown products. Biochem. J. 42, 323 (1948).Google Scholar
  95. 95.
    Padmanaban, G. and P. S. Sarma: An iron-binding compound from cobalt-toxic cultures of Neurospora crassa. Arch. Biochem. Biophys. 108, 362 (1965).Google Scholar
  96. 96.
    —: Studies on iron metabolism in Neurospora crassa. Arch. Biochem. Biophys. 111, 147 (1965).Google Scholar
  97. 97.
    Page, E. R.: Personal communication.Google Scholar
  98. 98.
    Page, R. M.: The effect of nutrition on growth and sporulation of Pilobolus. Amer. J. Bot. 39, 371 (1952).Google Scholar
  99. 99.
    Pidaks, C., A. R. Whitehill, L. M. Pruess, C. W. Hesseltine, B. L. Hutchings, N. Bohonos and J. H. Williams Coprogen, the isolation of a new growth factor required by Pilobolus species. J. Am. Chem. Soc. 75, 6064 (1953).Google Scholar
  100. 100.
    Pouteau-Thouvenot, M., A. Gaudemer and M. Barbier: On ferrorosamine, the pigment of Bacillus roseus fluorescens. Bull. Soc. Chim. Bio. 47, 2085 (1965).Google Scholar
  101. 101.
    Prelog, V.: Iron-containing antibiotics and microbic growth factors. Pure Appl. Chem. 6, 327 (1963).Google Scholar
  102. 102.
    — and A. Walser: Metabolic products of actinomycetes 36. On the synthesis of ferrioxamine B and D1. Helv. Chim. Acta 45, 631 (1962).Google Scholar
  103. 103.
    —: Metabolic products of actinomycetes, 38. The synthesis of ferrioxamine G. Helv. Chim. Acta 45, 1732 (1962).Google Scholar
  104. 104.
    Ratledge, C.: Relationship between the products of aromatic bio-synthesis in Mycobacterium smegmatis and Aerobacter aerogenes. Nature 203, 428 (1964).Google Scholar
  105. 105.
    Reich, C. V. and J. H. Hanks: Use of Arthrobacter terregens for bioassay of mycobactin. J. Bact. 87, 1317 (1964).Google Scholar
  106. 106.
    Reimann, J. E. and R. U. Bjerrum: Biosynthesis of 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one. Tetrahedron Letters 211 (1964).Google Scholar
  107. 107.
    Reynolds, D. M., A. Schatz and S. A. Waksman: Grisein, a new antibiotic produced by a strain of Streptomyces griseus. Proc. Soc. Exptl. Biol. Med. 64, 50 (1947).Google Scholar
  108. 108.
    — and S. A. Waksman: Grisein, an antibiotic produced by certain strains of Streptomyces griseus. J. Bacteriol. 55, 739 (1948).Google Scholar
  109. 109.
    Ricicova, A.: Antagonism of ferrichrome towards the main component of the antibiotic albomycin. Collection Czech. Chem. Commun. 28, 1761 (1963).Google Scholar
  110. 110.
    Rogers, D., T. E. King and V. H. Cheldelin: Growth stimulation of Lactobacillus gayonii by N-d-glucosylglycine. Proc. Soc. Exptl. Biol. Med. 82, 140 (1953).Google Scholar
  111. 111.
    Rogers, S. and J. B. Neilands: The alpha-amino-omega-hydroxamino acids. Biochemistry 2, 6 (1963).Google Scholar
  112. 112.
    —: Synthetic experiments in the ferrichrome series. Biochemistry, 3, 1850 (1964).Google Scholar
  113. 113.
    —, R. A. J. Warren and J. B. Neilands: Amino acid sequences within the ferrichrome cyclic hexapeptides. Nature 200, 167 (1963).Google Scholar
  114. 114.
    Sayigh, A. A. R. and H. Ulrich: Michael addition of hydroxylamine to double bonds. J. Org. Chem. 29, 2042 (1964).Google Scholar
  115. 115.
    Schwarzenbach, G. and K. Schwarzenbach: Hydroxamate complexes, I. The stability of the iron (III) complex of simple hydroxamic acids and ferrioxamine B. Helv. Chim. Acta 46, 1390 (1963).Google Scholar
  116. 116.
    Seifter, S., P. M. Gallup, S. Michaels and E. Meilman: Analysis of hydroxamic acids and hydrazides; preparation and properties of dinitrophenyl derivatives of hydroxamic acids, oximes, hydrazides and hydrazones. J. Biol. Chem. 235, 2613 (1960).Google Scholar
  117. 117.
    Sensi, P. and M. T. Timbal: Isolation of two antibiotics of the grisein and albomycin group. Antibiot. and Chemother. 9, 160 (1958).Google Scholar
  118. 118.
    Shiman, R.: Doctoral dissertation. University of California, Berkeley, (1965).Google Scholar
  119. 119.
    — and J. B. Neilands: Isolation, characterization and synthesis of pyrimine, an iron (II) binding agent from Pseudomonas GH. Biochemistry 4, 2233 (1965).Google Scholar
  120. 120.
    Shull, K. H. and S. Villa-Trevino: The effects of hadacidin and inosine on hepatic protein synthesis and ATP levels in ethionine-treated rats. Biochem. Biophys. Res. Commun. 16, 101 (1964).Google Scholar
  121. 121.
    Sklarz, B. and A. F. Al-Sayyab: Oxidation of hydroxamic acids—synthesis of amides. J. Chem. Soc. 1318 (1964).Google Scholar
  122. 122.
    Snow, G. A.: Mycobactin, a growth factor for Mycobacterium johnei, Part II. Degradation and identification of fragments. J. Chem. Soc. 2588 (1954).Google Scholar
  123. 123.
    Snow, G. A.: Mycobactin, a growth factor for Mycobacterium johnei, Part III. Degradation and tentative structure. J. Chem. Soc. 4080 (1954).Google Scholar
  124. 124.
    Snow, G. A.: An iron-containing growth factor from Mycobacterium tuberculosis. Biochem. J. 81, 4P (1961).Google Scholar
  125. 125.
    -: The structure of mycobactin P, a growth factor for Mycobacterium johnei, and the significance of its iron complex. Biochem. J. 94, 160 (1965).Google Scholar
  126. 126.
    -: Isolation and structure of mycobactin T, a growth factor from Mycobacterium tuberculosis. Biochem. J. 97, 166 (1965).Google Scholar
  127. 127.
    Stapley, E. O. and R. E. Ormond: Similarity of albomycin and grisein. Science 125, 587 (1957).Google Scholar
  128. 128.
    Stevens, R. and T. Emery: Biosynthesis of hadacidin. Biochemistry. 5, 74 (1966).Google Scholar
  129. 129.
    Stoll, A., A. Brach and J. Renz: Nocardamin, a new antibiotic from a Nocardia species. Schweiz. Z. Path. Bacteriol. 14, 225 (1951).Google Scholar
  130. 130.
    Stutz, E.: Ferrioxamin B uptake by tomato plants. Experentia 20, 430 (1964).Google Scholar
  131. 131.
    Thrum, H.: A new method of isolation of antibiotics of the grisein type. Naturwiss. 44, 561 (1957).Google Scholar
  132. 132.
    Traxler, R. W., C. E. Lankford and W. Shive: Purification and characterization of a growth stimulant for Bacillus species. Appl. Microbiol., 10, 99 (1962).Google Scholar
  133. 133.
    Tsukiura, H., M. Okanishi, T. Ohmori, H. Koshiyama, T. Miyaki, H. Kitazima and H. Kawaguchi: Danomycin, a new antibiotic. J. Antibiotics (Japan) Ser. A, 17, 39 (1964).Google Scholar
  134. 134.
    Turkova, J., O. Mikes, J. Schramel, O. Knessl and F. Sorm: The complex bond of albomycin and ferrichrome with the second iron atom. Antibiotiki 6, 506 (1964).Google Scholar
  135. 135.
    — and F. Sorm: Structure of the peptide moiety of albomycin. Experentia 19, 633 (1963).Google Scholar
  136. 136.
    —: Determination of the structure of the peptide moiety of the antibiotic albomycin. Collection Czech. Chem. Commun. 29, 280 (1964).Google Scholar
  137. 137.
    —: Chemical composition of the antibiotic albomycin, VIII. The determination of the sulfur atom bond in the molecule of the antibiotic albomycin. Collection Czech. Chem. Commun. 30, 118 (1965).Google Scholar
  138. 138.
    Vagelos, P. R., W. J. A. Vanden Heuvel, and M. G. Horning: Identification of hydroxamic acids by gas chromatography of isocyanate derivatives. Anal. Biochem. 2, 50 (1961).Google Scholar
  139. 139.
    Villavicencio, M. and J. B. Neilands: An inducible ferrichrome A-degrading peptidase from Pseudomonas Fc-1. Biochemistry 4, 1092 (1965).Google Scholar
  140. 140.
    Wahlroos, O. and A. I. Virtanen: The precursors of 6-methoxybenzoxazoline in maise and wheat plants, their isolation and some of their properties. Acta Chem. Scand. 13, 1906 (1959).Google Scholar
  141. 141.
    Waksman, S.: Penalty of isolationism. Science 125, 585 (1957).Google Scholar
  142. 142.
    Warren, R. A. J. and J. B. Neilands: Microbial degradation of the ferrichrome compounds. J. Gen. Microbiol. 35, 459 (1964).Google Scholar
  143. 143.
    —: Mechanism of microbial catabolism of the ferrichrome compounds. J. Biol. Chem. 240, 2055 (1965).Google Scholar
  144. 144.
    Weiss, U., F. Strelitz, H. Flon and I. N. Asheshov: Antibiotic compounds with action against bacterial viruses—neohydroxyaspergillic acid. Arch. Biochem. Biophys. 74, 150 (1958).Google Scholar
  145. 144a.
    Wickman, H. H., M. P. Klein and D. A. Shirley: Paramagnetic resonance of polycrystalline ferrichrome A. J. Chem. Phys. 42, 2113 (1965).Google Scholar
  146. 145.
    Wise, W. M. and W. W. Brandt: An investigation of some hydroxamic acids. J. Am. Chem. Soc. 77, 1058 (1955).Google Scholar
  147. 146.
    Yale, H. L.: The hydroxamic acids. Chem. Rev. 33, 209 (1943).Google Scholar
  148. 147.
    Yashpe, J., Y. S. Halpern and N. A. Grossowicz: quantitative method for the differential determination of hydroxylamine and β-aspartyl hydroxamate in mixtures. Anal. Chem. 32, 518 (1960).Google Scholar
  149. 148.
    Zahner, H., E. Bachmann, R. Hutter, and J. Nuesch: Sideramine, iron containing growthfactors from microorganisms. Path. Microbiol. 25, 708 (1962).Google Scholar
  150. 149.
    —, W. Keller-Schierlein, R. Hutter, K. Hess-Leisinger and A. Deer: Metabolic products of microorganisms, 40. Sideramine from Aspergillaceae. Arch. Mikrobiol. 45, 119 (1963).Google Scholar
  151. 150.
    Zalkin, A., J. D. Forrester and D. H. Templeton: Crystal and molecular structure of ferrichrome A. Science 146, 261 (1964).Google Scholar
  152. 151.
    Zalkin, A., J. D. Forrester and D. H. Templeton: Crystal and molecular structure of ferrichrome A. J. Am. Chem. Soc. In press.Google Scholar

Copyright information

© Springer-Verlag 1966

Authors and Affiliations

  • J. B. Neilands
    • 1
  1. 1.Biochemistry DepartmentUniversity of CaliforniaBerkeleyUSA

Personalised recommendations