Calculation of the partial volume of organic compounds and polymers

  • H. Durchschlag
  • P. Zipper
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 94)

Abstract

A novel, universal and easy-to-use approach is presented which allows the ab initio calculation of partial volumes of organic compounds, valid for aqueous solutions at 25°C. The method is based on Traube’s additivity principle and concept of volume increments for atoms. His concept, however, was improved considerably by manifold adaptations, corrections, and completions. Major improvements were performed in context with the increments for nitrogen, and the decrements for ring formation. Moreover, a procedure was developed for linking tabulated volumes of inorganic ions to calculated volumes of organic residues. The validity of our approach was confirmed by a systematic comparison of calculated and experimental volumes of different classes of organic and biochemical compounds, including small molecules and polymers of nonionic and ionic nature. The vast majority of calculated volumes is within a range of ± 2%, if compared with the experimental values. A detailed table summarizing calculated and experimental partial volumes of diverse organic and biochemical molecules is presented and allows estimation of errors to be expected when performing calculations of substances of unknown volume. The table may also be used as a powerful database for many purposes. The prediction of partial volumes of compounds of quite different structure and composition is of great importance for many fields of research: correct interpretation of the results from ultracentrifugal and solution scattering studies, statements on various solute-solvent interactions, etc.

Key words

Partial molar volume partial specific volume ab initio calculation organic compounds biochemical model compounds polymers ionic compounds aqueous solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kopp H (1839) Poggendorff's Ann 47:133–153Google Scholar
  2. 2.
    Kopp H (1889) Liebig's Ann Chem 250:1–117CrossRefGoogle Scholar
  3. 3.
    Traube J (1896) Liebig's Ann Chem 290:43–122CrossRefGoogle Scholar
  4. 4.
    Traube J (1899) Samml chem chem-tech Vortr 4:255–332Google Scholar
  5. 5.
    Millero FJ, Lo Surdo A, Shin C (1978) J Phys Chem 82:784–792CrossRefGoogle Scholar
  6. 6.
    Cabani S, Gianni P, Mollica V, Lepori L (1981) J Solution Chem 10:563–595CrossRefGoogle Scholar
  7. 7.
    Høiland H (1986) In: Hinz H-J (ed) Thermodynamic Data for Biochemistry and Biotechnology. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, pp 17–44Google Scholar
  8. 8.
    Durchschlag H, Zipper P (1993) In: Biškup B, Despotović R, Nemet Z (eds) Proceedings of the 1st Symposium of Croatian Society for Surfactants, Rovinj 1993. Croatian Society for Surfactants, Zagreb, pp 149–163Google Scholar
  9. 9.
    Durchschlag H (1986) In: Hinz H-J (ed) Thermodynamic Data for Biochemistry and Biotechnology. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, pp 45–128Google Scholar
  10. 10.
    Millero FJ (1971) Chem Rev 71:147–176CrossRefGoogle Scholar
  11. 11.
    Durchschlag H (1989) Colloid Polym Sci 267:1139–1150CrossRefGoogle Scholar
  12. 12.
    Schmidt GC (1890) Monatsh Chem 11:51–57Google Scholar
  13. 13.
    Cohn EJ, Edsall JT, eds (1943) Proteins, Amino Acids and Peptides as Ions and Dipolar Ions. Reinhold, New York. (1965) Reprint by Hafner, New YorkGoogle Scholar
  14. 14.
    Zamyatnin AA (1972) Progr Biophys Mol Biol 24:107–123CrossRefGoogle Scholar
  15. 15.
    Zamyatnin AA (1984) Annu Rev Biophys Bioeng 13:145–165CrossRefGoogle Scholar
  16. 16.
    Perkins SJ (1986) Eur J Biochem 157:169–180CrossRefGoogle Scholar
  17. 17.
    Langridge R, Marvin DA, Seeds WE, Wilson HR, Hooper CW, Wilkins MHF, Hamilton LD (1960) J Mol Biol 2:38–68CrossRefGoogle Scholar
  18. 18.
    Van Krevelen DW (1990) Properties of Polymers, 3rd ed. Elsevier, Amsterdam-London-New York-Tokyo, pp 71–107Google Scholar
  19. 19.
    Steele JCH Jr, Tanford C, Reynolds JA (1978) Methods Enzymol 48:11–23Google Scholar
  20. 20.
    Reynolds JA, McCaslin DR (1985) Methods Enzymol 117:41–53Google Scholar
  21. 21.
    Edward JT (1970) J Chem Educ 47:261–270CrossRefGoogle Scholar
  22. 22.
    Edward JT, Farrell PG (1975) Can J Chem 53:2965–2970CrossRefGoogle Scholar
  23. 23.
    Terasawa S, Itsuki H, Arakawa S (1975) J Phys Chem 79:2345–2351CrossRefGoogle Scholar
  24. 24.
    Shahidi F, Farrell PG, Edward JT (1976) J Solution Chem 5:807–816CrossRefGoogle Scholar
  25. 25.
    Edward JT, Farrell PG, Shahidi F (1977) J Chem Soc Faraday Trans I 73:705–714CrossRefGoogle Scholar
  26. 26.
    Shahidi F, Farrell PG, Edward JT (1977) J Chem Soc Faraday Trans I 73:715–721CrossRefGoogle Scholar
  27. 27.
    Shahidi F, Farrell PG (1978) J Chem Soc Faraday Trans I 74:858–868CrossRefGoogle Scholar
  28. 28.
    Chothia C (1975) Nature (London) 254:304–308CrossRefGoogle Scholar
  29. 29.
    Cabani S, Conti G, Lepori L (1972) J Phys Chem 76:1338–1343CrossRefGoogle Scholar
  30. 30.
    Cabani S, Conti G, Lepori L, Leva G (1972) J Phys Chem 76:1343–1347CrossRefGoogle Scholar
  31. 31.
    Cabani S, Conti G, Lepori L (1974) J Phys Chem 78:1030–1034CrossRefGoogle Scholar
  32. 32.
    Jolicoeur C, Boileau J, Bazinet S, Picker P (1975) Can J Chem 53:716–722CrossRefGoogle Scholar
  33. 33.
    Jolicoeur C, Lacroix G (1976) Can J Chem 54:624–631CrossRefGoogle Scholar
  34. 34.
    Jolicoeur C, Boileau J (1978) Can J Chem 56:2707–2713CrossRefGoogle Scholar
  35. 35.
    Roux G, Perron G, Desnoyers JE (1978) Can J Chem 56:2808–2814CrossRefGoogle Scholar
  36. 36.
    Edward JT, Farrell PG, Shahidi F (1979) Can J Chem 57:2887–2891CrossRefGoogle Scholar
  37. 37.
    Edward JT, Farrell PG, Shahidi F (1979) Can J Chem 57:2892–2894CrossRefGoogle Scholar
  38. 38.
    Zana R (1980) J Polym Sci Polym Phys Ed 18:121–126CrossRefGoogle Scholar
  39. 39.
    Letellier P, Gaboriaud R (1981) J Chim Phys 78:829–836Google Scholar
  40. 40.
    Rao MVR, Atreyi M, Rajeswari MR (1984) J Chem Soc Faraday Trans I 80:2027–2032CrossRefGoogle Scholar
  41. 41.
    Rao MVR, Atreyi M, Rajeswari MR (1984) J Phys Chem 88:3129–3131CrossRefGoogle Scholar
  42. 42.
    Yoshimura Y, Osugi J, Nakahara M (1985) Ber Bunsenges Phys Chem 89:25–31Google Scholar
  43. 43.
    Yoshimura Y, Nakahara M (1985) Ber Bunsenges Phys Chem 89:426–432Google Scholar
  44. 44.
    Yoshimura Y, Nakahara M (1985) Ber Bungsenges Phys Chem 89:1004–1008Google Scholar
  45. 45.
    Yoshimura Y, Nakhara M (1986) Ber Bunsenges Phys Chem 90:58–65Google Scholar
  46. 46.
    Nishimura N, Tanaka T, Motoyama T (1987) Can J Chem 65:2248–2253CrossRefGoogle Scholar
  47. 47.
    Makhatadze GI, Medvedkin VN, Privalov PL (1990) Biopolymers 30:1001–1010CrossRefGoogle Scholar
  48. 48.
    Kiyosawa K (1991) Biochim Biophys Acta 1064:251–255CrossRefGoogle Scholar
  49. 49.
    Noyes RM (1964) J Amer Chem Soc 86:971–979CrossRefGoogle Scholar
  50. 50.
    Millero FJ (1972) In: Horne RA (ed) Water and Aqueous Solutions. Wiley-Interscience, New York-London-Sydney-Toronto, pp 519–564Google Scholar
  51. 51.
    Friedman HL, Krishnan CV (1973) In: Franks F (ed) Water, A Comprehensive Treatise, Vol 3. Plenum Press, New York-London, pp 1–118Google Scholar
  52. 52.
    Edsall JT (1953) In: Neurath H, Bailey K (eds) The Proteins, Vol 1, Part B. Academic Press, New York, pp 549–726Google Scholar
  53. 53.
    Lax E, Synowietz C, eds (1967) D'Ans-Lax, Taschenbuch für Chemiker und Physiker, Vol I, 3rd ed. Springer-Verlag, Berlin-Heidelberg-New York, pp 80–105Google Scholar
  54. 54.
    Millero FJ (1972) In: Horne RA (ed) Water and Aqueous Solutions. Wiley-Interscience, New York-London-Sydney-Toronto, pp 565–595Google Scholar
  55. 55.
    Jolicoeur C, Philip PR, Perron G, Leduc PA, Desnoyers JE (1972) Can J Chem 50:3167–3178CrossRefGoogle Scholar
  56. 56.
    Stubičar N, Matejaš J, Zipper P, Wilfing R (1989) In: Mittal KL (ed) Surfactants in Solution, Vol 7. Plenum Press, New York-London, pp 181–195Google Scholar
  57. 57.
    Klärner PEO, Ende HA (1975) In: Brandrup J, Immergut EH (eds) Polymer Handbook, 2nd ed. Wiley-Interscience, New York-London-Sydney-Toronto, pp IV 61–113Google Scholar
  58. 58.
    Wandrey C, Görnitz E (1992) Acta Polymer 43:320–326CrossRefGoogle Scholar
  59. 59.
    Lederer K, Klapp H, Zipper P, Wrentschur E, Schurz J (1979) J Polym Sci Polym Chem Ed 17:639–648CrossRefGoogle Scholar
  60. 60.
    Durchschlag H, Puchwein G, Kratky O, Breitenbach JW, Olaj OF (1970) In: Overberger CG, Fox TG (eds) Polymers and Polymerization (J Polym Sci C 31). Wiley-Interscience, New York, pp 311–343Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1994

Authors and Affiliations

  • H. Durchschlag
    • 2
  • P. Zipper
    • 1
  1. 1.Institute of Physical ChemistryUniversity of GrazAustria
  2. 2.Institut für Biophysik und Physikalische BiochemieUniversität RegensburgRegensburgFRG

Personalised recommendations