Short-time dynamics and sedimentation of charge-stabilized suspensions

  • G. Nägele
  • B. Mandl
  • R. Klein
Supramolecular Structures Under Flow
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 98)


In this work, we discuss the combined effects of the electrostatic and hydrodynamic interaction (HI) on the short-time dynamics and the sedimentation velocity of charge-stabilized suspensions. For this purpose the measurable hydrodynamic function H(q) is calculated by using two methods based, respectively, on a renormalized density fluctuation expansion, and on a pairwise-additivity approximation of the hydrodynamic mobility tensors. It is shown that H(q) can deviate considerably from the free diffusion coefficient, D0, for systems of volume fractions Φ as low as 10−3, and that these effects are more pronounced for collective diffusion than for self-diffusion. For deionized suspensions, the sedimentation coefficient, H(0)/D0, and the short-time self-diffusion coefficient, Ds,short, are found at low Φ to scale, respectively, as Φ1/3 and Φ4/3. Furthermore, we analyze the dependence of H(0) and Ds,short on the amount of added electrolyte.

Key words

Short-time dynamics charge-stabilized suspensions hydrodynamic interaction sedimentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Philipse AP, Vrij A (1988) J Chem Phys 88:6459CrossRefGoogle Scholar
  2. 2.
    Nägele G, Kellerbauer O, Krause R, Klein R (1993) Phys Rev E 47:2562CrossRefGoogle Scholar
  3. 3.
    Nägele G, Steininger B, Genz U, Klein R (1994) Physica Scripta T 55:119CrossRefGoogle Scholar
  4. 4.
    Nägele G (1994) habilitation thesis, University of KonstanzGoogle Scholar
  5. 5.
    Beenakker CWJ, Mazur P (1983) Phys Letters A 98:22; Physica A 126:349 (1984); ibid. A 120:388 (1983)CrossRefGoogle Scholar
  6. 6.
    Genz U, Klein R (1991) Physica A 171:26CrossRefGoogle Scholar
  7. 7.
    Jones RB, Pusey PN (1991) Annu Rev Phys Chem 42:137CrossRefGoogle Scholar
  8. 8.
    Kim S, Karrila SJ (1991) “Microhydrodynamics” Butterworth-Heinemann, BostonGoogle Scholar
  9. 9.
    Batchelor GK (1972) J Fluid Mech 52:245CrossRefGoogle Scholar
  10. 10.
    Bussel WB, Glendinning AB (1981) J Chem Phys 74:948CrossRefGoogle Scholar
  11. 11.
    Cichocki B, Flederhof BU, Hinsen K, Wajnryb E, Blawzdziewicz J (1994) J Chem Phys 100:3780CrossRefGoogle Scholar
  12. 12.
    Jeffrey DJ, Onishi YH (1984) J Fluid Mech 139:261CrossRefGoogle Scholar
  13. 13.
    Mazur P, van Saarlos W (1982) Physica A 115:21CrossRefGoogle Scholar
  14. 14.
    Klein R, Nägele G, Nuevo Cimento, in pressGoogle Scholar
  15. 15.
    Krause R, D'Aguanno B, Mendez-Alcaraz JM, Nägele G, Klein R, Weber R, (1991) J Phys C 3:4459Google Scholar
  16. 16.
    Thies-Weesie D, Philipse AP, Nägele G, Mandl B, Klein R, submittedGoogle Scholar
  17. 17.
    Hasimoto H (1959) J Fluid Mech 5:317CrossRefGoogle Scholar
  18. 18.
    Cichocki B, Felderhof BU (1991) J Chem Phys 94:556; Denkov ND, Petsev DN (1992) Physica A 183:462CrossRefGoogle Scholar
  19. 19.
    Cichocki B, Felderhof BU (1988) J Chem Phys 89:3705CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1995

Authors and Affiliations

  • G. Nägele
    • 1
  • B. Mandl
    • 1
  • R. Klein
    • 1
  1. 1.Fakultät für PhysikUniversität KonstanzKonstanzFRG

Personalised recommendations