Fabrication and optical spectroscopy of ultra small III–V compound semiconductor structures

  • Alfred Forchel
  • Helmut Leier
  • Bernd E. Maile
  • Roland Germann
Part of the Advances in Solid State Physics book series (ASSP, volume 28)


The paper discusses the fundamental technological processes for the fabrication of one- and zero-dimensional III–V compound semiconductor structures which are developed for optical spectroscopy. Using high-resolution electron beam lithography, two different approaches to the fabrication of quantum wires and dots have been taken: By electron beam lithography and dry etching of quantum well layers lateral confinement of the electron hole pairs can be obtained. Optical investigations of excitonic transitions in these structures, however, show that the properties are largely determined by surface effects. By the combination of implantation induced interdiffusion of quantum wells with high resolution electron-beam lithography on the other hand we define buried quantum wires and dots. Optical spectra from these structures show pronounced energetic shifts which can be traced to changes of the quantum well composition and to lateral quantization.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Esaki and R. Tsu, IBM Research Note RC-2418 (1969); L. Esaki and R. Tsu, IBM J. Res. Develop. 14, 61 (1970)Google Scholar
  2. [2]
    R. Dingle, Festkörperprobleme/Advances in Solid State Physics, Vol. XV, ed. by H. J. Queisser (Vieweg, Braunschweig 1975), p. 21Google Scholar
  3. [3]
    J. C. Maan, G. Belle, A. Fasolino, M. Altarelli, and K. Ploog, Phys. Rev. B30, 2253 (1984)CrossRefADSGoogle Scholar
  4. [4]
    R. C. Miller and D. A. Kleinmann, J. Lumin. 30, 520 (1985)CrossRefGoogle Scholar
  5. [5]
    J. Feldmann, G. Peter, E. O. Göbel, P. Dawson, K. Moore, C. Foxon, and R. Elliot, Phys. Rev. Lett. 59, 2337 (1987)CrossRefADSGoogle Scholar
  6. [6]
    G. Tränkle, H. Leier, A. Forchel, C. Ell, H. Haug, and G. Weimann, Phys. Rev. Lett. 58, 419 (1987)CrossRefADSGoogle Scholar
  7. [7]
    Y. Arakawa and A. Yariv, IEEE QE 22, 1887 (1986)CrossRefGoogle Scholar
  8. [8]
    M. D. Camras, N. Holonyak, Jr., K. Hess, R. D. Burnham, and D. R. Scifres, Appl. Phys. Lett. 41, 317 (1982)CrossRefADSGoogle Scholar
  9. [9]
    N. T. Linh, Festkörperprobleme/Advances in Solid State Physics, Vol. XXIII, ed. by P. Grosse (Vieweg, Braunschweig 1983), p. 227Google Scholar
  10. [10]
    M. Abe, T. Minura, K. Nishiuchi, A. Shibatomi, and M. Kobayashi, IEEE QE 22, 1870 (1986)CrossRefGoogle Scholar
  11. [11]
    Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982)CrossRefADSGoogle Scholar
  12. [12]
    P. M. Petroff, A. C. Gossard, R. A. Logan, and W. Wiegmann, Appl. Phys. Lett. 41, 635 (1982)CrossRefADSGoogle Scholar
  13. [13]
    J. Cibert, P. M. Petroff, G. J. Dolan, S. J. Pearton, A. C. Gossard, and J. H. English, Appl. Phys. Lett. 49, 1275 (1986)CrossRefADSGoogle Scholar
  14. [14]
    H. Temkin, G. J. Dolan, M. B. Panish, and S. N. G. Chu, Appl. Phys. Lett. 50, 413 (1987)CrossRefADSGoogle Scholar
  15. [15]
    B. E. Maile, A. Forchel, R. Germann A. Menschig, K. Streubel, F. Scholz, G. Weimann, and W. Schlapp, Microelectronic Engineering 6, 163 (1987)CrossRefGoogle Scholar
  16. [16]
    R. E. Howard, L. D. Jackel, and W. J. Skocpol, Microelectronic Engineering 3, 3 (1985)CrossRefGoogle Scholar
  17. [17]
    M. Isaacson and A. Muray, J. Vac. Sci. Technol. 19, 1117 (1981)CrossRefADSGoogle Scholar
  18. [18]
    F. Emoto, K. Gamo, S. Namba, N. Samato, and R. Shimizu, Jap. J. Appl. Phys. 24, L809 (1985)CrossRefADSGoogle Scholar
  19. [19]
    M. Komuro, H. Hiroshima, H. Tanoue, and T. Kanayama, J. Vac. Sci. Technol. B4, 985 (1983)CrossRefGoogle Scholar
  20. [20]
    Y. Hirayama, Y. Suzuki, H. Okamoto, and S. Tarucha, Jap. J. Appl. Phys. 24, L516 (1985)CrossRefADSGoogle Scholar
  21. [21]
    S. Namba, Microelectronic Engineering 6, 315 (1987)CrossRefGoogle Scholar
  22. [22]
    A. C. Warren, I. Plotnik, E. H. Anderson, M. L. Schattenburg, D. A. Antoniadis, and H. I. Smith, J. Vac. Sci. Technol. B4, 365 (1986)CrossRefGoogle Scholar
  23. [23]
    Electron-beam technology in microfabrication, ed. by R. Brewer (Academic Press, New York, 1980)Google Scholar
  24. [24]
    L. D. Jackel, R. E. Howard, P. M. Mankiewiech, H. G. Craighead, and R. W. Epworth, Appl. Phys. Lett. 45, 698 (1984)CrossRefADSGoogle Scholar
  25. [25]
    D. F. Kyser, J. Vac. Sci. Technol., B1, 1391 (1983).Google Scholar
  26. [26]
    J. S. Greeneich, J. Electrochem. Soc. 122, 970 (1975)CrossRefGoogle Scholar
  27. [27]
    R. E. Howard and D. E. Prober, in “VLSI Electronics-Microstructure Science”, Vol. 5, p. 146, ed. by N. G. Einspruch (Academic Press 1982)Google Scholar
  28. [28]
    B. E. Maile, A. Forchel, A. Menschig, R. Germann, and H. P. Meier, to be publishedGoogle Scholar
  29. [29]
    S. Thomas, C. D. W. Wilkinson, S. P. Beaumont, J. Frost, and C. R. Stanley, Microelectronic Engineering 5, 249 (1986)CrossRefGoogle Scholar
  30. [30]
    A. R. Reinberg, in: VLSI Electronics—Microstructure Science, Vol. 2 (Academic Press, New York 1981)Google Scholar
  31. [31]
    M. B. Stern, H. G. Craighead, P. F. Liao, and P. M. Mankiewich, Appl. Phys. Lett. 45, 410 (1984)CrossRefADSGoogle Scholar
  32. [32]
    H. C. Casey and E. Buehler, Appl. Phys. Lett. 30, 247 (1977)CrossRefADSGoogle Scholar
  33. [33]
    C. van Opdorp, C. Werkhoven, and A. T. Vink, Appl. Phys. Lett. 30, 40 (1977)CrossRefADSGoogle Scholar
  34. [34]
    H. Hillmer, S. Hansmann, A. Forchel, M. Morohashi, E. Lopez, H. P. Meier, and K. Ploog, to be publishedGoogle Scholar
  35. [35]
    K. K. Choi, D. C. Tsui, and K. Alavi, Appl. Phys. Lett. 50, 110 (1987)CrossRefADSGoogle Scholar
  36. [36]
    J. Bellessa, F. Carcenac, A. Izrael, H. Launois, and D. Mailly, Microelectronic Engineering 6, 175 (1987)CrossRefGoogle Scholar
  37. [37]
    The value for the surface recombination velocity in InGaAs can be estimated from [14] in conjunction with [32] H. C. Casey and E. Buehler, Appl. Phys. Let. 30, 247 (1977)CrossRefADSGoogle Scholar
  38. [38]
    Y. Miyamoto, M. Cao, Y. Shingai, K. Furuya, Y. Suematsu, K. G. Revikumar, and S. Arai, Jap. J. Appl. Phys. 26, L225 (1987)CrossRefADSGoogle Scholar
  39. [39]
    H. Leier, H. Rothfritz, and A. Forchel, to be publishedGoogle Scholar
  40. [40]
    W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, Appl. Phys. Lett. 38, 776 (1981)CrossRefADSGoogle Scholar
  41. [41]
    J. J. Coleman, P. D. Dapkus, C. G. Krikpatrick, M. D. Camras, and N. Holonyak Appl. Phys. Lett. 40, 904 (1982)CrossRefADSGoogle Scholar
  42. [42]
    H. Nakashima, S. Semura, T. Ohta, Y. Uchida, H. Saito, T. Fukuzawa, T. Kuroda, and K. L. I. Kobayashi, IEEE QE 21, 629 (1985)CrossRefGoogle Scholar
  43. [43]
    D. G. Deppe, G. S. Jackson, N. Holonyak, D. C. Hall, R. D. Burnham, R. L. Thornton, J. E. Epler, and T. L. Paoli, Appl. Phys. Lett. 50, 329 (1987)CrossRefGoogle Scholar
  44. [44]
    J. F. Ziegler, J. P. Biersack, and U. Littmark, The stopping and range of ions in solids, ed. by J. F. Ziegler, Vol. 1 (Pergamon Press, London 1985)Google Scholar
  45. [45]
    T. Venkatesan, S. A. Schwarz, D. M. Hwang, R. Bhat, H. W. Yonn, P. Mei, Y. Arakawa, and A. Yariv, Appl. Phys. Lett. 49, 701 (1986).CrossRefADSGoogle Scholar
  46. [46]
    Y. Hirayama, Y. Suzuki, and H. Okamoto, Jap. J. Appl. Phys. 24, 1498 (1985)CrossRefADSGoogle Scholar
  47. [47]
    J. Cibert, P. M. Petroff, D. J. Werder, S. J. Pearton, A. C. Gossard, and J. H. English, Appl. Phys. Lett. 49, 223 (1986)CrossRefADSGoogle Scholar
  48. [48]
    Y. Hirayama, S. Tarucha, Y. Suzuki, and H. Okamoto, Phys. Rev. B37, 2774 (1988)CrossRefADSGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1988

Authors and Affiliations

  • Alfred Forchel
    • 1
  • Helmut Leier
    • 1
  • Bernd E. Maile
    • 1
  • Roland Germann
    • 1
  1. 1.4. Physikalisches InstitutUniversität StuttgartStuttgart 80Federal Republic of Germany

Personalised recommendations