Disorder and impurities in hubbard-antiferromagnets

  • M. Ulmke
  • P. J. H. Denteneer
  • V. Janiš
  • R. T. Scalettar
  • A. Singh
  • D. Vollhardt
  • G. T. Zimanyi
Conference paper
Part of the Advances in Solid State Physics book series (ASSP, volume 38)

Abstract

We study the influence of disorder and randomly distributed impurities on the properties of correlated antiferromagnets. To this end the Hubbard model with (i) random potentials, (ii) random hopping elements, and (iii) randomly distributed values of interaction is treated using quantum Monte Carlo and dynamical mean-field theory. In cases (i) and (iii) weak disorder can lead to an enhancement of antiferromagnetic (AF) order: in case (i) by a disorder-induced delocalization, in case (iii) by binding of free carriers at the impurities. For strong disorder or large impurity concentration antiferromagnetism is eventually destroyed. Random hopping leaves the local moment stable but AF order is suppressed by local singlet formation. Random potentials induce impurity states within the charge gap until it eventually closes. Impurities with weak interaction values shift the Hubbard gap to a density off half-filling. In both cases an antiferromagnetic phase without charge gap is observed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    G. Xiao, M. Z. Cieplak, A. Gavrin, F. H. Streitz, A. Bakhshai, and C. L. Chien, Phys. Rev. Lett. 60, 1446 (1988); B. Keimer et al., Phys. Rev. B 45, 7430 (1992); A. V. Mahajan, H. Alloul, G. Collin, and J. F. Marucco, Phys. Rev. Lett. 72, 3100 (1994).CrossRefADSGoogle Scholar
  2. [2]
    M. C. Martin, M. Hase, K. Hirota, G. Shirane, Y. Sasago, N. Koide, and K. Uchinokur, Phys. Rev. B 56, 3173 (1997); P. E. Anderson, J. Z. Liu, and R. N. Shelton, Phys. Rev. B 56, 11014 (1997).CrossRefADSGoogle Scholar
  3. [3]
    M. Azuma, Y. Fujishiro, M. Takano, M. Nohara, and H. Takagi, Phys. Rev. B 55, 8658 (1997).CrossRefADSGoogle Scholar
  4. [4]
    H. Takagi et al., Phys. Rev. B 40, 2254 (1989); S. Uchida, et al., Phys. Rev. B 43, 7942 (1991).CrossRefADSGoogle Scholar
  5. [5]
    T. Ido, K. Magoshi, H. Eisaki, and S. Uchida, Phys. Rev. B 44, 12094 (1991).CrossRefADSGoogle Scholar
  6. [6]
    S. Hüfner, P. Steiner, I. Sander, F. Reinert, and H. Schmitt, Z. Phys. B 86, 207 (1992);ibid. S. Hüfner, P. Steiner, I. Sander, F. Reinert, and H. Schmitt, Z. Phys. B 88, 247 (1992) F. Reinert et al., Z. Phys. B 97, 83 (1995).CrossRefADSGoogle Scholar
  7. [7]
    M. Ma and E. Fradkin, Phys. Rev. B 28, 2990 (1983); A. M. Finkelshtein, Zh. Eksp. Teor. Fiz. 84, 168 (1983) [Sov. Phys. JETP 57, 97 (1983)]; C. Castellani, C. Di Castro, P. A. Lee, and M. Ma, Phys. Rev. B 30, 527 (1984); C. Castellani, C. Di Castro, and M. Grilli, ibid. C. Castellani, C. Di Castro, and M. Grilli, 34, 5907 (1986).CrossRefADSGoogle Scholar
  8. [8]
    A. M. Finkelshtein, Z. Phys. B 56, 189 (1984); C. Castellani, et al. Phys. Rev. B 30, 1956 (1984); 33, 6169 (1986).CrossRefADSGoogle Scholar
  9. [9]
    M. Ma, Phys. Rev. B 26, 5097 (1982); J. Yi, L. Zhang, and G. S. Canright, Phys. Rev. B 49, 15 920 (1994).CrossRefADSGoogle Scholar
  10. [10]
    M. E. Tusch and D. E. Logan, Phys. Rev. B 48, 14 843 (1993).Google Scholar
  11. [11]
    A. Singh and Z. Tešanović, Phys. Rev. B 41, 614 (1990); 41, 11 457 (1990), S. Basu and A. Singh, Phys. Rev. B 53, 6406 (1996).CrossRefADSGoogle Scholar
  12. [12]
    V. Janiš and D. Vollhardt, Phys. Rev. B 46, 15 712 (1992).Google Scholar
  13. [13]
    V. Dobrosavljević and G. Kotliar, Phys. Rev. Lett. 71, 3218 (1993); Phys. Rev. B 50, 1430 (1994).CrossRefADSGoogle Scholar
  14. [14]
    V. Janiš, M. Ulmke, and D. Vollhardt, Europhys. Lett. 24, 287 (1993); M. Ulmke, V. Janiš, and D. Vollhardt, Phys. Rev. B 51, 10 411 (1995).CrossRefADSGoogle Scholar
  15. [15]
    A. Sandvik and D. J. Scalapino, Phys. Rev. 47, 10090 (1993); A. Sandvik, D. J. Scalapino, and P. Henelius Phys. Rev. 50, 10474 (1994).CrossRefGoogle Scholar
  16. [16]
    M. Ulmke and R. T. Scalettar, Phys. Rev. B 55, 4149 (1997).CrossRefADSGoogle Scholar
  17. [17]
    P. J. H. Denteneer, M. Ulmke, R. T. Scalettar, G. T. Zimanyi, Physica A 251, 162 (1998); M. Ulmke, P. J. H. Denteneer, R. T. Scalettar, G. T. Zimanyi, Europhys. Lett. 42, 655 (1998).CrossRefGoogle Scholar
  18. [18]
    D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66, 261 (1994).CrossRefADSGoogle Scholar
  19. [19]
    R. N. Bhatt and P. A. Lee, Phys. Rev. Lett. 48, 344 (1982); M. Milovanović, S. Sachdev, and R. N. Bhatt, Phys. Rev. Lett. 63, 82 (1989).CrossRefADSGoogle Scholar
  20. [20]
    R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D 24, 2278 (1981). J. E. Hirsch, Phys. Rev. B 28, 4059 (1983). G. Sugiyama and S.E. Koonin, Ann. Phys. 168, 1 (1986); S. Sorella, S. Baroni, R. Car, and M. Parrinello, Europhys. Lett. 8, 663 (1989). S. R. White, D. J. Scalapino, R. L., Sugar, E. Y. Loh, J. E. Gubernatis, and R. T. scalettar, Phys. Rev. B 40, 506 (1989).CrossRefADSGoogle Scholar
  21. [21]
    D. A. Huse, Phys. Rev. B 37, 2380 (1988).CrossRefADSGoogle Scholar
  22. [22]
    W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989); D. Vollhardt, in Correlated Electron Systems, ed. V. J. Emery, World Scientific, Singapore, 1993.CrossRefADSGoogle Scholar
  23. [23]
    T. Pruschke, M. Jarrell, J. K. Freericks, Adv. Phys. 44, 187 (1995); A. Georges. G. Kotliar, W. Krauth, M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).CrossRefADSGoogle Scholar
  24. [24]
    P. A. Wolff, Phys. Rev. 124, 1030 (1961).CrossRefADSGoogle Scholar
  25. [25]
    J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521 (1986).CrossRefADSGoogle Scholar
  26. [26]
    A. Singh, M. Ulmke, and D. Vollhardt, Phys. Rev. B 58 (to appear Oct. 1998); condmat/9803094.Google Scholar
  27. [27]
    P. Sen, S. Basu, and A. Singh, Phys. Rev. B 50, 10 381 (1994); P. Sen and A. Singh, Phys. Rev. B 53, 328 (1996); A. Singh and P. Sen, Phys. Rev. B 57, 10598 (1998).Google Scholar
  28. [28]
    N. Bulut, D. Hone, D. J. Scalapino, and E. Y. Loh, Phys. Rev. Lett. 62, 2192 (1989); D. Poilbanc, D. J. Scalapino, and W. Hanke, Phys. Rev. Lett. 72, 884 (1994); G. B. Martins, M. Laukamp, J. Riera, and E. Dagotto, Phys. Rev. Lett. 78, 3563 (1997); Y. Motome, N. Katoh, N. Furukawa, and M. Imada, J. Phys. Soc. Jpn. 65, 1949 (1996).CrossRefADSGoogle Scholar
  29. [29]
    W. Brenig, and A. P. Kampf, Phys. Rev. B 43, 12 914 (1991); E. Manousakis, Phys. Rev. B, 45, 7570 (1992); C. C. Wan, A. B. Harris and D. Kumar, Phys. Rev. B 48, 1036 (1993).Google Scholar
  30. [30]
    M. Corti et al., Phys. Rev. B 56, 11056 (1997).CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    A. Sandvik and M. Vekić, Phys. Rev. Lett. 74, 1226 (1995).CrossRefADSGoogle Scholar
  32. [32]
    For a recent review see: F. Gebhard, The Mott Metal-Insulator Transition, Springer Tracts in Modern Physics, vol. 137, (Springer, Heidelberg 1997).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1999

Authors and Affiliations

  • M. Ulmke
    • 1
  • P. J. H. Denteneer
    • 2
  • V. Janiš
    • 3
  • R. T. Scalettar
    • 4
  • A. Singh
    • 1
  • D. Vollhardt
    • 1
  • G. T. Zimanyi
    • 4
  1. 1.Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Insitut für PhysikUniversität AugsburgAugsburgGermany
  2. 2.Lorentz Institute for Theoretical PhysicsUniversity of LeidenLeidenThe Netherlands
  3. 3.Institute of PhysicsAcademy of Sciences of the Czech RepublikPraha 8Czech Republik
  4. 4.Department of PhysicsUniversity of CaliforniaDavisUSA

Personalised recommendations