Mesoscopic effects in the thermopower of dilute AuFe alloys

  • C. Strunk
  • G. Neuttiens
  • M. Henny
  • C. Van Haesendonck
  • C. Schönenberger
Spin Systems
Part of the Advances in Solid State Physics book series (ASSP, volume 39)

Abstract

We have employed electron heating experiments, and noise thermometry to perform quantitative measurements of the thermopower in mesoscopic samples. This new measuring technique allows to detect finite size effects in the thermopower of narrow AuFe wires with an Fe concentration ranging from 50 to 3000 ppm. The size effects emerge when reducing the width of the wires below ≅300 nm. Our observations can be understood in terms of a magnetic anisotropy which affects the spins close to the surface of the sample. The spin glass freezing at lower temperatures suppresses the size effects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    For a recent review see, e.g.: J. A. Mydosh, Spin glasses, An experimental introduction, (Taylor & Francis, London, 1993).Google Scholar
  2. [2]
    G. Chen and N. Giordano, Phys. Rev. Lett. 66, 209 (1991).CrossRefADSGoogle Scholar
  3. [3]
    J. F. DiTusa et al., Phys. Rev. Lett. 68, 678 (1992).CrossRefADSGoogle Scholar
  4. [4]
    K. R. Lane, M. Park, M. S. Isaacson, and J. M. Parpia, Phys. Rev. B51, 945 (1995).CrossRefADSGoogle Scholar
  5. [5]
    V. Chandrasekhar et al., Phys. Rev. Lett. 72, 2053 (1994).CrossRefADSGoogle Scholar
  6. [6]
    G. Neuttiens et al., Europhys. Lett. 34, 617 (1996).CrossRefADSGoogle Scholar
  7. [7]
    M. A. Blachly and N. Giordano, Europhys. Lett. 27, 687 (1994).CrossRefADSGoogle Scholar
  8. [8]
    R. Buchmann, H. P. Falke, H. P. Jablonski, and E. F. Wassermann, Phys. Rev. B 17, 4315 (1978).CrossRefADSGoogle Scholar
  9. [9]
    W. B. Thimm, J. Kroha, and J. van Delft, Phys. Rev. Lett. 82, 2143 (1999).CrossRefADSGoogle Scholar
  10. [10]
    O. Újsághy, A. Zawadowski and B. L. Gyorffy, Phys. Rev. Lett. 76, 2378 (1996); O. Újsághy and A. Zawadowski, Phys. Rev. B 57, 11, 598 (1998) and Phys. Rev. B 57, 11 609 (1998); V. Fomin et al., Sol. Stat. Comm. 106, 293, (1998).CrossRefADSGoogle Scholar
  11. [11]
    I. Martin, Y. Wan, and P. Phillips, Phys. Rev. Lett. 78, 114 (1997).CrossRefADSGoogle Scholar
  12. [12]
    R. D. Barnard, Thermoelectricity in metals and alloys (Taylor & Francis, London, 1972).Google Scholar
  13. [13]
    D. K. C. MacDonald, W. B. Pearson, and I. M. Templeton, Proc. Roy. Soc. A266, 161 (1962).CrossRefADSGoogle Scholar
  14. [14]
    J. Eom et al., Phys. Rev. Lett. 77, 2276 (1996).CrossRefADSGoogle Scholar
  15. [15]
    G. Neuttiens et al., Europhys. Lett. 42, 185 (1998).CrossRefADSGoogle Scholar
  16. [16]
    C. Strunk et al., Phys. Rev. Lett. 81, 2982 (1998).CrossRefADSGoogle Scholar
  17. [17]
    M. Henny et al., Appl. Phys. Lett. 71, 773 (1997).CrossRefADSGoogle Scholar
  18. [18]
    B. L. Gallagher et al., Phys. Rev. Lett. 64, 2058 (1990).CrossRefADSGoogle Scholar
  19. [19]
    L. W. Molenkamp et al., Phys. Rev. Lett. 65, 1052 (1990).CrossRefADSGoogle Scholar
  20. [20]
    See, e.g.: G. Bergmann, Wei Wei, Yao Zhou, and R. M. Mueller, Phys. Rev. B 41, 7386 (1990), J. F. DiTusa et al., Phys. Rev. Lett. 68, 1156 (1992).CrossRefADSGoogle Scholar
  21. [21]
    K. E. Nagaev, Phys. Rev. B 52, 4740 (1995).CrossRefADSGoogle Scholar
  22. [22]
    Here we assume that the magnetic TEP dominates all other contributions, which is well justified for dilute magnetic alloys [12].Google Scholar
  23. [23]
    O. Laborde and P. Radhakrishna, Sol. Stat. Comm. 9, 701 (1971).CrossRefADSGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1999

Authors and Affiliations

  • C. Strunk
    • 1
  • G. Neuttiens
    • 2
  • M. Henny
    • 1
  • C. Van Haesendonck
    • 2
  • C. Schönenberger
    • 1
  1. 1.Institut für PhysikUniversität BaselBaselSwitzerland
  2. 2.Laboratorium voor Vaste-Stoffysica en MagnetismeKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations