Location and reconstruction of objects using a modified gradient approach

  • Ralph E. Kleinman
  • Peter M. van den Berg
  • Bernard Duchêne
  • Dominique Lesselier
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 486)


A large class of inverse scattering problems involves the attempt to determine the shape, location, and constitutive parameters of a bounded object or objects from a knowledge of the field scattered by the object(s) when illuminated or ensonified by a known time harmonic incident field. The fields may be electromagnetic or acoustic and while the field equations are different in each case, the inverse problem may be cast in a general framework which accommodates both phenomena and in fact may be extended to include time-harmonic inverse scattering of elastic waves. This class of problems has been attacked in a number of ways including Born-based methods [1], Newton-Kantorovich methods [2], diffraction tomography


Electrical Impedance Tomography Scattered Field Constitutive Parameter Incident Field Binary Version 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Tijhuis A. G.: Born-type reconstruction of material parameters of an inhomogeneous lossy dielectric slab from reflected-field data. Wave Motion 11, 151–173 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Roger A.: A Newton-Kantorovich algorithm applied to an electromagnetic inverse problem. IEEE Trans. Antennas Propagat. AP-29, 232–238 (1981)CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    Tabbara W., Duchêne B., Pichot Ch., Lesselier D., Chommeloux L., Joachimowicz N.: Diffraction tomography: Contribution to the analysis of applications in microwaves and ultrasonics. Inverse Problems 4, 305–331 (1988)CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    Colton D., Kress R.: Inverse Acoustic and Electromagnetic Scattering Theory (Springer, Berlin Heidelberg, 1992)zbMATHGoogle Scholar
  5. [5]
    Kleinman R. E., van den Berg P. M.: A modified gradient method for two-dimensional problems in tomography. J. Comp. Appl. Math. 42, 17–35 (1992)zbMATHCrossRefGoogle Scholar
  6. [6]
    van den Berg P. M., Kleinman R. E.: Gradient Methods in Inverse Acoustic and Electromagnetic Scattering. IMA Proc. Large Scale Global Optimization (Springer, Berlin Heidelberg, to appear)Google Scholar
  7. [7]
    Wen Lixin, Kleinman R. E., van den Berg P. M.: Modified gradient profile inversion using H-polarized waves. Digest of IEEE-AP Symp., Newport Beach, CA, 1598–1601 (1995)Google Scholar
  8. [8]
    Charbonnier P., Blanc-Féraud L., Aubert G., Barlaud M.: Deterministic edgepreserving regularization in computed imagery. IEEE Trans. Image Processing (to appear)Google Scholar
  9. [9]
    Aubert G., Lazavoaia L.: A variational method in image recovery. SIAM J. Num. Anal. (to appear)Google Scholar
  10. [10]
    Ruden B., Osher S., Fatemi C.: Nonlinear total variation based noise removal algorithm. Physica 60D, 259–268 (1992)ADSGoogle Scholar
  11. [11]
    Dobson D. C., Santosa F.: An image-enhancement technique for electrical impedance tomography. Inverse Problems 10, 317–334 (1994)zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. [12]
    Acar R., Vogel C. R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems 10, 1217–1229 (1994)zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. [13]
    van den Berg P. M., Kleinman R. E.: A total variation enhanced modified gradient algorithm for profile reconstruction. Inverse Problems 11, L5–L10 (1995)zbMATHCrossRefGoogle Scholar
  14. [14]
    Kleinman R. E., van den Berg P. M.: An extended range modified gradient technique for profile inversion. Radio Sci. 28, 877–884 (1993)ADSCrossRefGoogle Scholar
  15. [15]
    Kleinman R. E., van den Berg P. M.: Two-dimensional location and shape reconstruction. Radio Sci. 29, 1157–1169 (1994)CrossRefADSGoogle Scholar
  16. [16]
    Belkebir K., Kleinman R. E., Pichot Ch.: Microwave imaging-location and shape reconstruction from multifrequency scattering data. IEEE Trans. Microwave Theory (to appear) Tech.Google Scholar
  17. [17]
    Lesselier D., Duchêne B.: Wavefield inversion of objects in stratified environments; from back propagation schemes to full solutions. Review of Radio Science 1993–1996, W. R. Stone Ed. (Oxford University Press, New York, 1996), 235–268Google Scholar
  18. [18]
    Souriau L., Duchêne B., Lesselier D., Kleinman R. E.: Modified gradient approach to inverse scattering for binary objects in stratified media. Inverse Problems 12, 463–481 (1996)zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. [19]
    van den Berg P. M., Coté M. G., Kleinman R. E.: “Blind” shape reconstruction from experimental data. IEEE Trans. Antennas Propagat. AP-43, 1389–1396 (1995)CrossRefADSGoogle Scholar
  20. [20]
    Duchêne B., Lesselier D.: On modified gradient solution methods using the binary aspect of the unknown electromagnetic parameters and their application to the Ipswich data. IEEE Antennas Propagat. Mag. 38, 45–47 (1996)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Ralph E. Kleinman
    • 1
  • Peter M. van den Berg
    • 2
  • Bernard Duchêne
    • 3
  • Dominique Lesselier
    • 3
  1. 1.Center for the Mathematics of Waves, Department of Mathematical SciencesUniversity of DelawareNewarkUSA
  2. 2.Centre for Technical Geoscience, Laboratory of Electromagnetic ResearchDelft University of TechnologyDelftThe Netherlands
  3. 3.Laboratoire des Signaux et SystèmesC.N.R.S.-SUPELECGif-sur-Yvette CedexFrance

Personalised recommendations