N=2 SUSY two-boson KP hierarchy, (derivative) NLS equation and miura transformations

  • S. Krivonos
  • Z. Popowicz
Supersymmetric Quantum Mechanics And Integrable Systems
Part of the Lecture Notes in Physics book series (LNP, volume 524)


We present the N=2 supersymmetric extensions of the derivative NLS equation and quadratic two-boson KP hierarchy. We propose the KP-like Lax operators in terms of the N=2 superfields which reproduce all conserved currents through the non-standard Lax representations. The connection of these derivative supersymmetric NLS equations with the N=2, a=4 super-KdV hierarchy is established.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. W. Oevel and Z. Popowicz (1991), Commun.Math.Phys. 139 441.MATHCrossRefADSMathSciNetGoogle Scholar
  2. E. Ivanov and S. Krivonos (1993), Phys.Lett. B309 63.Google Scholar
  3. P. Kersten (1988), Phys.Lett. A134 25.ADSMathSciNetGoogle Scholar
  4. P. Dagris and P. Mathieu (1993), Phys. Lett A176 67.ADSGoogle Scholar
  5. C.A. Laberge and P. Mathieu (1988), Phys.Lett. B215 718.ADSMathSciNetGoogle Scholar
  6. P. Labelle and P. Mathieu (1991), J. Math. Phys. 32 923.MATHCrossRefADSMathSciNetGoogle Scholar
  7. Z. Popowicz (1993), Phys. Lett. A174 411.ADSMathSciNetGoogle Scholar
  8. F. Delduc and E. Ivanov (1993), Phys. Lett. B309 312.ADSMathSciNetGoogle Scholar
  9. E. Ivanov and S. Krivonos (1997), Phys. Lett. A231 75.ADSMathSciNetGoogle Scholar
  10. S. Bellucci, E. Ivanov and S. Krivonos (1993), J. Math. Phys. 34 3087.MATHCrossRefADSMathSciNetGoogle Scholar
  11. C. Yung (1993), Mod. Phys. Lett. A8 1161.ADSMathSciNetGoogle Scholar
  12. L. Bonora, S. Krivonos and A. Sorin (1996), Nucl. Phys. B477 835.CrossRefADSMathSciNetGoogle Scholar
  13. L. Bonora, S. Krivonos and A. Sorin (1998), Lett. Math. Phys. 45 63.MATHCrossRefMathSciNetGoogle Scholar
  14. F. Delduc and L. Gallot (1997), Comm. Math. Phys. 190 395.MATHCrossRefADSMathSciNetGoogle Scholar
  15. S. Krivonos and A. Sorin (1997), “Extended N=2 supersymmetric matrix (1,s) KdV hierarchies”, solv-int/9712002.Google Scholar
  16. S. Krivonos and A. Sorin (1995), Phys. Lett. B357 94.ADSMathSciNetGoogle Scholar
  17. D. Kaup and A. Newell (1978), J. Math. Phys. 19 798.MATHCrossRefADSMathSciNetGoogle Scholar
  18. H. Chen, Y. Lee and C. Lin (1979), Phys. Scr. 20 490.MATHCrossRefADSGoogle Scholar
  19. H. Aratyn, L.A. Ferreira, J.F. Gomes and A.H. Zimerman (1993), Phys. Lett. B316 85.ADSMathSciNetGoogle Scholar
  20. Z. Popowicz (1997), Computer Physics Comm. 100 277.MATHCrossRefADSGoogle Scholar
  21. S. Krivonos and K. Thielemans (1996), Class. Quant. Grav. 13 2899.MATHCrossRefADSMathSciNetGoogle Scholar
  22. L. Bonora and C.S. Xiong (1992), Phys. Lett. B285 191; Phys. Lett. B317 (1993) 329; Int. J. Mod. Phys. A8 (1993) 2973.ADSMathSciNetGoogle Scholar
  23. S. Krivonos, A. Sorin and F. Toppan (1995), Phys.Lett. A206 146.ADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • S. Krivonos
    • 1
  • Z. Popowicz
    • 2
  1. 1.JINR-Bogoliubov Laboratory of Theoretical PhysicsDubna, Moscow RegionRussia
  2. 2.Institute of Theoretical PhysicsUniversity of WroclawWroclawPoland

Personalised recommendations