Layer potential methods for boundary value problems on lipschitz domains

  • Eugene Fabes
Surveys
Part of the Lecture Notes in Mathematics book series (LNM, volume 1344)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.P. Calderon, Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sci. U.S.A., 74 (1977), 1324–1327.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    R.R. Coifman, A. McIntosh, Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur L2 pour lescourbes Lipschitziennes, Annals of Math. 116 (1982), 361–387.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    B.E.J. Dahlberg, Weighted norm inequalities for the Lusin area integral and nontangential maximal functions for functions harmonic in a Lipschitz domain, Studia Math. 67 (1980), 297–314.MathSciNetMATHGoogle Scholar
  4. 4.
    B.E.J. Dahlberg, C.E. Kenig, Hardy spaces and the LP Neumann problem for Laplace’s equation in a Lipschitz domain, Annals of Math., 125 (1987), 437–465.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    B.E.J. Dahlberg, C.E. Kenig, G.C. Verchota, Boundary value problems for the systems of elastostatics on a Lipschitz domain, Preprint available.Google Scholar
  6. 6.
    E.B. Fabes, M. Jodeit, Jr., and M.M. Riviere, Potential techniques for boundary value problems on C1 domains, Acta Math. 141 (1978), 165–186.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    O.D. Kellogg, Foundations of Potential Theory, New York, Dover, 1954.Google Scholar
  8. 8.
    V.D. Kupradze. Thru Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North Holland, New York, 1979.Google Scholar
  9. 9.
    J. Nečas, Les Méthodes Directes en Théorie des Equations Elliptiques, Academia, Prague, 1967.Google Scholar
  10. 10.
    F. Rellich, Darstellung der Eigenwerte von Au+λu durch ein Randintegral, Math. Z. 46 (1940), 635–646.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    G.C. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains, Journal of Functional Analysis, 59 (1984), 572–611.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Eugene Fabes

There are no affiliations available

Personalised recommendations