Probability methods in potential theory

  • Kai-Lai Chung
Part of the Lecture Notes in Mathematics book series (LNM, volume 1344)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aizenman, M., Simon, B.: Brownian motion and Harnack inequality for Schrödinger operators, Comm. Appl. Math. 35, 209–273 (1982).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Chung, K. L., S. R. S. Varadhan: Kac functional and Schrödinger equation, Studia Math. 68, 249–260 (1980).MathSciNetMATHGoogle Scholar
  3. 3.
    Chung, K. L., Rao, K. M.: Feynman-Kac functional and the Schrödinger equation, Seminar on Stochastic Processes 1, 1–29 (1981) Birkhäuser, Boston.Google Scholar
  4. 4.
    Chung, K. L.: Lectures from Markov Processes to Brownian Motion, Grundlehren der Mathematishen Wissenschaften 249, Springer-Verlag, 1982.Google Scholar
  5. 5.
    Chung, K. L.: Brownian motion on the line, J. of Math. Research and Exposition 2, 87–98 (1982).MathSciNetMATHGoogle Scholar
  6. 6.
    Chung, K. L., R. Durrett, Z. Zhao: Extension of domains with finite gauge, Math. Ann. 264, 73–79 (1983).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chung, K. L.: Conditional gauges, Seminar on Stochastic Processes 3, 17–22 (1983).Google Scholar
  8. 8.
    Chung, K. L.: Notes on the inhomogeneous Schrödinger equation, Seminar on Stochastic Processes 4, 55–62 (1984).Google Scholar
  9. 9.
    Chung, K. L. Hsu, P.: Gauge theorem for the Neumann problem, Seminar on Stochastic Processes 4, 63–70 (1984).MathSciNetGoogle Scholar
  10. 10.
    Chung, K. L.: The gauge and conditional gauge theorem, Séminaire des probabilités XIX, 496–503 (1983/84), see also XX, 423–425 (1984/85).Google Scholar
  11. 11.
    Chung, K. L.: Probabilistic approach to boundary value problems for Schrödinger’s equation, Expo. Math. 3, 175–178 (1985).MATHGoogle Scholar
  12. 12.
    Chung, K. L.: Doubly-Feller process with multiplicative functional, Seminar on Stochastic Processes 5, 63–78 (1985).Google Scholar
  13. 13.
    Chung, K. L., Li, P., Williams, R. J.: Comparison of probability and classical methods for the Schrödinger equation, Expo. Math. 4, 271–278 (1986).MATHGoogle Scholar
  14. 14.
    Chung, K. L.: Green’s function for a ball, Seminar on Stochastic Processes 6, 1–14 (1986).Google Scholar
  15. 15.
    Chung, K. L., Rao, K. M.: General gauge theorem for multiplicative functionals, Trans. Amer. Math. Soc. (to appear).Google Scholar
  16. 16.
    Cranston, M., Fabes, E., Zhao, Z.: Conditional gauge and potential theory for the Schrödinger operator, Trans. Amer. Math. Soc. (to appear).Google Scholar
  17. 17.
    Doob, J. L.: Classical Potential Theory and its Probabilistic Counterpart, Grundlehren der Mathematischen Wissenschaften 262, Springer-Verlag, 1983.Google Scholar
  18. 18.
    Falkner, N.: Feynman-Kac functionals and positive solutions of 1/2Δμ+=0. Wahrscheinlichkeitstheorie verw. Gebiete 65, 19–34 (1983).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Hoffman-Ostenhof, M., Hoffman-Ostenhof, T., Simon, B.: Brownian motion and a consequence of Harnack’s inequality: Nodes of quantum wave functions, Proc. Amer. Math. Soc. 80, 301–305 (1980).MathSciNetMATHGoogle Scholar
  20. 20.
    Hsu, P.: Reflecting Brownian motion, boundary local times and the Neumann problem, Doctroal Dissertation, Stanford University, June 1984.Google Scholar
  21. 21.
    Jersion, D., Kenig, C.: Boundary value problems on Lipschitz domains, M. A. A. Studies in Math. Vol. 23, 1–68 (1982).MathSciNetGoogle Scholar
  22. 22.
    Ma, Z., Zhao, Z.: Truncated gauge and Schrödinger operator with eigenvalues of both signs, Seminar on Stochastic Processes 6, 149–154 (1986).Google Scholar
  23. 23.
    Sturm, T.: On the Dirichlet-Poisson problem for Schrödinger operators, C. R. Math. Rep. Acad. Sci. Canada 9, 149–154 (1987).MathSciNetMATHGoogle Scholar
  24. 24.
    Williams, R. J.: A Feynman-Kac gauge for solvability of the Schrödinger equation, Advances Appl. Math. 6, 1–3 (1985).CrossRefMATHGoogle Scholar
  25. 25.
    Zhao, Z.: Conditional gauge with unbounded potential, Z. Wahrscheinlichkeitstheorie verw. Gebiete 65, 13–16 (1983).MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Zhao, Z: Uniform boundedness of conditional gauge and Schrödinger equation, Commun. Math. Phys. 93, 19–31 (1984).CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Kai-Lai Chung
    • 1
  1. 1.Mathematics DepartmentStanford UniversityStanfordUSA

Personalised recommendations