Glycobiotechnology: Enzymes for the synthesis of nucleotide sugars

  • Lothar Elling
Chapter

Abstract

Complex carbohydrates, as constituting part of glycoconjugates such as glycoproteins, glycolipids, hormones, antibiotics and other secondary metabolities, play an active role in inter-and intracellular communication. The aim of “glycobiotechnology” as an upcoming interdisciplinary research field is to develop highly efficient synthesis strategies, including in vivo and in vitro approaches, in order to bring such complex molecules into analytical and therapeutic studies. The enzymatic synthesis of glycosidic bonds by Leloir-glycosyltransferases is an efficient strategy for obtaining saccharides with absolute stereo- and regioselectivity in high yields and under mild condiitons. There are, however, two obstacles hindering the realization of this process on a biotechnological scale namely the production of recombinant Leloir-glycosyltransferases and the availability of enzymes for the synthesis of nucleotide sugars (the glycosyltransferase donor substrates). The present review surveys some synthetic targets which have attracted the interest of glycobiologists as well as recombinant expression systems which give Leloir-glycosyltransferase activities in the mU and U range. The main part summarizes publications concerned with the complex pathways of primary and secondary nucleotide sugars and the availability and use of these enzymes for synthesis applications. In this context, a survey of our work will demonstrate how enzymes from different sources and pathways can be combined for the synthesis of nucleotide deoxysugars and oligosaccharides.

List of Symbols and Abbreviations

A

Adenine

ADP

Adenosine 5′-diphosphate

ADP-Glc

Adenosine 5′-diphosphate α-d-glucose

C

Cytosine

CDP

Cytidine 5′-diphosphate

CDP-Glc

Cytidine 5′-diphosphate α-d-glucose

Cer

Ceramide

Fruc

d-fructose

Fuc

l-fucose

FucT

Fucosyltransferase

Gal

d-galactose

GalNAc

N-acetyl-d-galactosamine

GalNAcT

N-acetyl-d-galactosaminyltransferase

GalNH2-1-P

Galactosamine-1-phosphate

GalT

Galactosyltransfarase

GDP

Guanosine 5′-diphosphate

GDP-Fuc

Guanosine 5′-diphosphate β-l-fucose

GDP-Man

Guanosine 5′-diphosphate α-d-mannose

Glc-1-P

Glucose-1-phosphate

Glc-6-P

Glucose-6-phosphate

GlcNAc

N-acetyl-d-glucosamine

GlcNAcT

N-acetyl-d-glucosaminyltransferase

in situ Reg

In situ regeneration

LacNAc

N-acetyllactosamine

Le

Lewis blood group

Man

d-mannose

ManT

Mannosyltransferase

NAD

Nicotinamide adenine dinucleotide

NADH

Nicotinamide adenine dinucleotide hydride

Nat

Native

NDP

Nucleoside 5′-diphosphate

NeuAc

N-acetyl neuraminic acid

NMP

Nucleoside 5′-monophosphate

NTP

Nucleoside 5′-triphosphate

PEP

Phosph(enol)pyruvate

PP

Pyrophosphorylase

Pyr

Pyruvate

Rec

Recombinant

Ser

l-serine

SuSy

Sucrose synthase

Thr

l-threonine

dTDP

2′-deoxythymidine 5′-diphosphate

dTDP-Glc

2′-deoxythymidine 5′-diphosphate α-d-glucose

U

Uracil

dU

2′-deoxy-uridine

UDP

Uridine 5′-diphosphate

DUP-Ara

Uridine 5′-diphosphate β-l-arabinose

UDP-Gal

Uridine 5′-diphosphate α-d-galactose

UDP-GalNAc

Uridine 5′-diphosphate N-acetyl-α-d-galactosamine

UDP-GalNH2

Uridine 5′-diphosphate α-d-galactosamine

UDP-Glc

Uridine 5′-diphosphate-α-d-glucose

dUDP-Glc

2′-deoxy-uridine 5′-diphosphate α-d-glucose

UDP-GlcA

Uridine 5′-diphosphate α-d-glucuronic acid

UDP-GlcNAc

Uridine 5′-diphosphate N-acetyl-α-d-glucosamine

UDP-Xyl

Uridine 5′-diphosphate α-d-xylose

UMP

Uridine 5′-diphosphate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9 References

  1. 1.
    Montreuil J (1995) The history of glycoprotein research, a personal view. In: Montreuil J, Schachter H, Vliegenthart JFG (eds) Glycoproteins New Comprehensive Biochemistry Vol 29a. Elsevier, Amsterdam, p 1Google Scholar
  2. 2.
    Feizi T, Larkin M (1990) Glycobiology 1: 17Google Scholar
  3. 3.
    colman PM (1994) Protein Science 3: 1687Google Scholar
  4. 4.
    Jann K, Jann B (1984) Structure and biosynthesis of O-antigens. In: Rietschel ET (ed) Handbook of endotoxin Vol 1 Chemistry of endotoxin. Elsevier, Amsterdam, p 138Google Scholar
  5. 5.
    Whitfield C, Valvano MA (1993) Adv Microb Physiol 35: 135Google Scholar
  6. 6.
    Zähringer U, Lindner B, Rietschel ET (1994) Adv Carbohydr Chem Biochem 50: 211Google Scholar
  7. 7.
    Tomlinson S, De Carvalho LP, Vandekerckhove F, Nussenzweig, V (1992) Glycobiology 2: 549Google Scholar
  8. 8.
    Vandekerckhove F, Schenkman S, De Carvalho LP, Tomlinson S, Kiso M, Yoshida M, Hasegawa A, Nussenzweig V (1992) Glycobiology 2: 541Google Scholar
  9. 9.
    Van den Eijnden DH, Neeleman AP, Van der Knaap WPW, Bakker H, Agterberg M, Van Die I (1995) Biochem Soc Trans 23: 175Google Scholar
  10. 10.
    Van den Eijnden DH, Neeleman AP, Van der Knaap WPW, Bakker H, Agterberg M Van Die I (1995) Adv Exp Med Biol 376: 47.Google Scholar
  11. 11.
    Paulson JC (1992) Selectin/carbohydrate mediated adhesion of leukocytes. In: Harlan JM, Liu DY (eds) Adhesion: Its role in inflammatory disease. Freeman, New York, p 19Google Scholar
  12. 12.
    Varki A (1994) Proc Natl Acad Sci USA 91: 7390Google Scholar
  13. 13.
    Lasky LA (1995) Ann Rev Biochem 64: 113Google Scholar
  14. 14.
    Furukawa K, Kobata A (1992) Cell surface carbohydrates—their involvement in cell adhesion. In: Ogura H (ed) Carbohydrates—synthetic methods, applications in medicinal chemistry. VCH, Weinheim, p 369Google Scholar
  15. 15.
    Hakomori S-I (1984) Am J Clin. Pathol 82: 635Google Scholar
  16. 16.
    Feizi T (1985) Nature 314: 53Google Scholar
  17. 17.
    Fukuda M (1994) Carbohydrate-mediate, adhesion of tumor cells. In: Bock K (ed) Complex carbohydrates in drug research, Alfred Benzon Symposium, Mungsgaard, Copenhagen, p 353Google Scholar
  18. 18.
    Piepersberg W (1994) CRC Critical Reviews in Biotechnology 14: 251Google Scholar
  19. 19.
    Liu H-W, Thorson JS (1994) Ann. Rev Microbiol 48: 223Google Scholar
  20. 20.
    Baenziger JU, Green ED (1988) Biochim Biophys Acta 947: 287Google Scholar
  21. 21.
    Cumming DA (1991) Glycobiology 1: 115Google Scholar
  22. 22.
    Rasmussen JR (1991) Glycosylation of recombinant proteins. In: Ginsberg V, Robbins PW (eds) Biology of Carbohydrates Vol 3, Jai Press, London, p 179Google Scholar
  23. 23.
    Takeuchi M, Kobata A (1991) Glycobiology 1: 337Google Scholar
  24. 24.
    Hart G, Holt GD, Haltiwanger RS (1988) TIBS 13: 380Google Scholar
  25. 25.
    Montreuil J, Vliegenthart JFG, Schachter H (eds) (1995) New Comprehensive Biochemistry, Vol 29a, Glycoproteins. Elsevier, AmsterdamGoogle Scholar
  26. 26.
    Fukuda M, Hindsgaul O (eds) (1994) Frontiers in Molecular Biology, Molecular Glycobiology, IRL Press, OxfordGoogle Scholar
  27. 27.
    Van Echten G, Sandhoff K (1993) J Biol Chem 268: 5341Google Scholar
  28. 28.
    Varki A (1993) Glycobiology 3: 97Google Scholar
  29. 29.
    Lis H, Sharon N (1993) Eur J Biochem 218: 1Google Scholar
  30. 30.
    Rademacher TW, Parekh RB, Dwek RA (1988) Ann Rev Biochem 57: 785Google Scholar
  31. 31.
    Kornfeld R, Kornfeld S (1985) Ann Rev Biochem 54: 631Google Scholar
  32. 32.
    Tanner W, Lehle L (1987) Biochim Biophys Acta 906: 81Google Scholar
  33. 33.
    Watkins WM (1991) Pure Appl Chem 63: 561Google Scholar
  34. 34.
    Schmidt RR (1986) Angew Chem Int Ed Engl 25: 212Google Scholar
  35. 35.
    Paulsen H (1982) Angew Chem Int Ed Engl 21: 155Google Scholar
  36. 36.
    Kondo H, Aoki S, Ichikawa Y, Halcomb RL, Ritzen H Wong C-H (1994) J Org Chem 59: 864–877.Google Scholar
  37. 37.
    Schmidt RR, Kinzy W (1994) Adv Carbohydr chem Biochem 50: 21Google Scholar
  38. 38.
    Garg HG, von dem Bruch K, Kunz H (1994) Adv Carbohydr Chem Biochem 50: 277Google Scholar
  39. 39.
    Khan SH, Hindsgaul O (1994) Chemical synthesis of oligosaccharides. In: Fukuda M, Hindsgaul O (eds) Frontiers in Molecular Biology, Molecular Glycobiology. IRL Press, Oxford, p 206Google Scholar
  40. 40.
    Gijsen HJM, Qiao L, Fitz W, Wong C-H (1996) Chem Rev 96: 443Google Scholar
  41. 41.
    Wong C-H, Halcomb RL, Ichikawa Y, Kajimoto T (1995) Angew Chem Int Ed Engl 34: 412Google Scholar
  42. 42.
    Wong C-H, Halcomb RL, Ichikawa Y, Kajimoto T (1995) Angew Chem Int Ed Engl 34: 521Google Scholar
  43. 43.
    Fukuda M (1994) Cell surface carbohydrates: cell type specific expression In: Fukuda M, Hindsgaul O (eds) Frontiers in Molecular Biology, Molecular Glycobiology. IRL Press, Oxford, p 1Google Scholar
  44. 44.
    Schachter H (1995) Biosynthesis 2c Glycosyltransferases involved in the synthesis of N-glycan antennae. In: Montreuil J, Vliegenthart JFG, Schachter H (eds) (1995), New Comprehensive Biochemistry Vol 29a, Glycoproteins. Elsevier, Amsterdam, p 153.Google Scholar
  45. 45.
    Paulson JC (1989) TIBS 14: 272Google Scholar
  46. 46.
    Brockhausen I (1995) Biosynthesis 3. Biosynthesis of O-glycans of the N-acetylgalactosamine-α-Ser/Thr linkage type. In: Montreuil J, Vliegenthart JFG Schachter H (eds) (1995) New Comprehensive Biochemistry Vol 29a, Glycoproteins. Elsevier, Amsterdam, p 201Google Scholar
  47. 47.
    Watkins WM (1995) Biosynthesis 5. Molecular basis of t antigenic specificity in the A, B, 0, H and Lewis blood group system. In: Montreuil J, Vleigenthard JFG, Schachter H (eds) (1995) New Comprehensive Biochemistry Vol 29a, Glycoproteins. Elsevier, Amsterdam, p 313Google Scholar
  48. 48.
    Stroud MR, Levery SB, Hakomori S-I (1993) Extended type I glycosphingolipids Lea-Lea (Dimeric Lea) and Lea-Leb as human tumor associated antigens. In: Garegg PJ, Lindberg AA (eds) Carbohydrate antigens. American Chemical Society, New York, p 159Google Scholar
  49. 49.
    Jentoft N (1990) TIBS 15: 291Google Scholar
  50. 50.
    Schachter H, Brockhausen I (1992) The biosynthesis of Serine/Threonine-N-Acetylgalactosamine-Linked carbohydrate moieties. In: Allen HJ, Kisalius EC (eds), Glycoconjugates: composition, structure and function, Marcel Dekker, New York, p 263Google Scholar
  51. 51.
    Chai W, Hounsell EF, Cashmore GC, Rosankiewicz JR, Bauer C (1992) Eur J Biochem 203: 257Google Scholar
  52. 52.
    Levery SB, Weiss JB, Salyan ME, Roberts CE, Hakomori S-I (1992) J Biol Chem 267: 5542Google Scholar
  53. 53.
    Makaaru CK, Damian RT, Smith DF, Cummings RD (1992) J Biol Chem 267: 2251Google Scholar
  54. 54.
    Neeleman AP (1996) PhD-thesis, Vrije Universiteit AmsterdamGoogle Scholar
  55. 55.
    Muramatsu T (1988) Biochmie 70: 1587Google Scholar
  56. 56.
    Drickamer K (1994) Molecular structure of animal lectins. In: Fukuda M, Hindsgaul O (eds) Frontiers in Molecular Biology, Molecular Glycobiology, IRL Press, Oxford, p 53Google Scholar
  57. 57.
    Lasky LA (1992) Science 258: 964Google Scholar
  58. 58.
    Lowe JB (1994) Carbohydrate recongnition in cell-cell interaction. In: Fukuda M, Hindsgaul O (eds) Frontiers in Molecular Biology, Molecular Glycobiology. IRL Press, Oxford, p 163Google Scholar
  59. 59.
    Ogawa J-I, Inoue H, Koide S (1996) Cancer Res 56: 325Google Scholar
  60. 60.
    Mulligan MS, Paulson JC, De Frees S, Zheng Z-L, Ward P (1993) Nature 364: 149Google Scholar
  61. 61.
    Messner P, Sleytr UB (1991) Glycobiology 1: 545Google Scholar
  62. 62.
    Sumper M, Wiel FT (1995) Bacterial glycoproteins. In: Montreuil J, Vliegenthart JFG, Schachter H (eds) (1995) New Comprehensive Biochemistry, Vol 29a, Glycoproteins. Elsevier, Amstardam, p 455Google Scholar
  63. 63.
    Hartmann E, Messner P, Almeier G, König H (1993) J Bacteriol 175: 4515Google Scholar
  64. 64.
    Hartmann E, König H (1989) Arch Microbiol 151: 274Google Scholar
  65. 65.
    König H, Kandler O, Hammes W (1989) Can J Microbiol 35: 176Google Scholar
  66. 66.
    Hartmann E, König H (1990) naturwissenschaften 77: 472Google Scholar
  67. 67.
    Rietschel ET, Brade L, Schade FU, Seydel U, Zähringer U, Mamat U, Schmidt G, Ulmer A-J, Loppnow H, Flad H-D, di Padova F, Schreier MH, Brade H (1993) Imun Infekt 21: 26Google Scholar
  68. 68.
    Zähringer U, Lindner B, Rietschel ET (1994) Adv Carbohydr Chem Biochem 50: 211Google Scholar
  69. 69.
    Jiang X-M, Neal B, Lee SJ, Romana LK, Reeves PR (1991) Mol Microbiol 5: 695Google Scholar
  70. 70.
    Asiinall GO, Monteiro MA, Pang H, Walsh EJ, Moran AP (1994) Carbohydr, Lett 1: 151Google Scholar
  71. 71.
    Aspinall GO, Monteiro MA (1996) Biochemistry 35: 2498Google Scholar
  72. 72.
    Aspinall GO, Monteiro MA, Pang H, Walsh EJ, Moran AP (1996) Biochemistry 35: 2489Google Scholar
  73. 73.
    Chan NWC, Stangier K, Sheriburne R, Taylor DE, Zhang Y, Dovichi NJ, Palcic M (1995) Glycobiology 5: 683Google Scholar
  74. 74.
    Seno ET, Hutchinson CR (1986) The biosynthesis of tylosin and erythromycin: Model, systems for the studies of the genetics and biochemistry of antibiotic formation. In: Queener SW, Day LE (eds): The Bacteria Volume IX Antibiotic-Producing Streptomyces. Academic Press, Orlando, p 231Google Scholar
  75. 75.
    Okuda T, Ito Y (1982) Biosynthesis and mutasynthesis of aminoglycoside antibiotics. In: Umezawa H, Hooper IR (eds) Aminoglycoside Antibiotics. Springer, Berlin Heidelberg New York, p 111Google Scholar
  76. 76.
    Omura S (1992) The search for bioactive compounds from microorganisms. Springer Berlin Heidelberg New YorkGoogle Scholar
  77. 77.
    Peschke U, Schmidt H, Zhang H-Z, Piepersberg W (1995) Mol Microbiol 16: 1137.Google Scholar
  78. 78.
    Sinnott ML (1990) Chem Rev 90: 1171Google Scholar
  79. 79.
    Withers SG, Street IP (1988) J Am Chem Soc 110: 8551Google Scholar
  80. 80.
    Withers SG, Warren AJ, Street IP, Rupitz K, Kempton JB, Aebersold R (1990) J Am Chem Soc 112: 5887Google Scholar
  81. 81.
    Withers SG, Aebersold R (1995) Protein Science 4: 361Google Scholar
  82. 82.
    Nilsson KGI (1988) TIBTECH 6: 256Google Scholar
  83. 83.
    Larsson P-O, Hedbys L, Svensson S, Mosbach K (1987) Meth. Enzymol 136: 230Google Scholar
  84. 84.
    Nilsson KGI (1987) Carbohydr Res 167: 95.Google Scholar
  85. 85.
    Johansson E, Hedbys L, Larsson P-O, Mosbach K, Gunarsson A (1986) Biotechnol Lett 8: 421Google Scholar
  86. 86.
    Ajisaka K, Nishida H, Fujimoto H (1987) Biotechnol Lett 9: 243Google Scholar
  87. 87.
    Hedbys L, Larsson P-O, Mosbach K (1984) Biochem Biophys Res Commun 123: 8Google Scholar
  88. 88.
    Herrmann GF, Kragl U, Wandrey C (1993) Angew Chem Int Ed Engl 32: 1342Google Scholar
  89. 89.
    Sakai K, Katsumi R, Ohi H, Usui T, Ishido Y (1992) J Carbohydr Chem 11: 553Google Scholar
  90. 90.
    Usui T, Kubota S, Ohi H (1993) Carbohydr Res 244: 315Google Scholar
  91. 91.
    Ajisaka K, Nishida H, Fujimoto H (1987) Biotechnol Lett 9: 387Google Scholar
  92. 92.
    Nilsson KGI (1988) Carbohydr Res 180: 53Google Scholar
  93. 93.
    Crout DH, Howarth OW, Singh S, Swoboda BEP, Critchley P, Gibson WT (1991) J Chem Soc Chem Commun: 1550Google Scholar
  94. 94.
    Crout DHG, MacManus DA, Ricca J-M, Critchley P, Gibson WT (1992) Pure Appl Chem 64: 1079Google Scholar
  95. 95.
    Crout DHG, Singh S, Swoboda BEP, Critchley P, Gibson WT (1992) J Chem Soc Chem Commun: 704.Google Scholar
  96. 96.
    Wong C-H, Whitesides GM (1994) Enzymes in Organic Synthesis. Elsevier Science, OxfordGoogle Scholar
  97. 97.
    Kren V, Thiem J (1995) Angew Chem Int Ed Engl 34: 893Google Scholar
  98. 98.
    Leloir L (1971) Science, 172: 1299Google Scholar
  99. 99.
    Beyer TA, Sadler JE, Rearick JI, Paulson JC, Hill RL (1981) Glycosyltransferases and their use in assessing oligosaccharide structure and structure-function relationships. In: Meister A (ed) Advances in Enzymology, Related Molecular Biology Vol 52, Wiley, New York, p 24Google Scholar
  100. 100.
    Kleene R, Berger E (1993) Biochim Biophys Acta 1154: 283Google Scholar
  101. 101.
    Palcic MM (1994) Meth Enzymol 230: 300Google Scholar
  102. 102.
    Field MC, Wainwright LJ (1995) Glycobiology 5: 463Google Scholar
  103. 103.
    Wainwright LJ, Field MC (1996) Glycobiology 6: 5Google Scholar
  104. 104.
    Dinter A, Berger EG (1995) The regulation of cell-and tissue-specific expression of glycans by glycosyltransferases. In: Alavi A, Axford JS (eds) Glycoimmunology. Plenum Press, New York, p 53Google Scholar
  105. 105.
    Paulson JC, Colley KJ (1989) J Biol Chem 264: 17615Google Scholar
  106. 106.
    Nilsson T, Lucocq JM, Mackay D, Warren G (1991) EMBO J 10: 3567Google Scholar
  107. 107.
    Teasdale RD, D'Agostaro G, Gleeson PA (1992) J Biol Chem 267: 4084Google Scholar
  108. 108.
    Aoki D, Lee N, Yamaguchi N, Dubois C, Fukuda MN (1992) Proc Natl Acad Sci USA 89: 4319Google Scholar
  109. 109.
    Masibay AS, Balaji PV, Boeggeman EE, Quasba PK (1993) J Biol Chem 268: 9908Google Scholar
  110. 110.
    Russo RN, Shaper NL, Taatjes DJ, Shaper JH (1992) J Biol Chem 267: 9241Google Scholar
  111. 111.
    Munro S (1991) EMBO J 10: 3577Google Scholar
  112. 112.
    Burke J, Pettitt JM, Schachter H, Sarkar M, Gleeson PA (1992) J Biol Chem 267: 24433Google Scholar
  113. 113.
    Tang BL, Wong SH, Low SH, Hong W (1992) J Biol Chem 267: 10122Google Scholar
  114. 114.
    Elhammer A, Kornfeld S (1986) J Biol Chem 261: 5249Google Scholar
  115. 115.
    Nishikawa Y, Pegg W, Paulsen H, Schachter H (1988) J Biol Chem 263: 8270Google Scholar
  116. 116.
    Sarnesto A, Köhlin T, Hindsgaul O, Thurin J, Blaszczyk-Thurin M (1992) J. Biol Chem 267: 2737Google Scholar
  117. 117.
    Sarnesto A, Köhlin T, Hindsgaul O, Vogele K, Blaszczyk-Thurin M, Thurin J (1992) J Biol Chem 267: 2745Google Scholar
  118. 118.
    Sugiura M, Kawasaki T, Yamashina I (1982) J Biol Chem 257: 9501Google Scholar
  119. 119.
    Weinstein J, de Souza-e-Silva U, Paulson JC (1982) J Biol Chem 257: 13845Google Scholar
  120. 120.
    Aoki D, Appert HE, Johnson D, Wong SS, Fukuda MN (1990) EMBO J 9: 3171Google Scholar
  121. 121.
    Wang Y, Wong SS, Fukuda MN, Zu H, Liu Z, Tang Q, Apper T HE (1994) Biochem Biophys Res Commun 204: 701Google Scholar
  122. 122.
    Zu H, Fukuda MN, Wong SS, Wang Y, Liu Z, Tang Q, Apper HE (1995) Biochem Biophys Res Commun 206: 362Google Scholar
  123. 123.
    Wen DX, Livingston BD, Medzihradszky KF, Kelm S, Burlingame AL, Paulson JC (1992) J Biol Chem 267: 21011Google Scholar
  124. 124.
    Drickamer K (1993) Glycobiology 3: 2Google Scholar
  125. 125.
    Datta AK, Paulson JC (1995) J Biol Chem 270: 1497Google Scholar
  126. 126.
    Tsuji S (1995) RIKEN Rev 8: 5Google Scholar
  127. 127.
    Holme EH, Xu Z, Sherwood L, Macher BA (1995) J Biol Chem 270: 8145Google Scholar
  128. 128.
    Holmes EH (1992) Arch Biochem Biophys 296: 562Google Scholar
  129. 129.
    Liu D, Haase AM, Lindqvist L, Lindberg AA, Reves PR (1993) J Bacteriol 175: 3408Google Scholar
  130. 130.
    David S, Augé C, Gautheron C (1991) Adv Carbohydr Chem Biochem 49: 175Google Scholar
  131. 131.
    Ichikawa Y, Look GC, Wong C-H (1992) Anal Biochem 202: 215Google Scholar
  132. 132.
    Palcic MM Hindsgaul O (1996) Trends in Glycosci Glycotechnol, 8: 37Google Scholar
  133. 133.
    Thiem J (1995) FEMS Microbiol Rev 16: 193Google Scholar
  134. 134.
    Waldmann H (1995) Enzymatic synthesis of O-glycosides, VCH, WeinheimGoogle Scholar
  135. 135.
    Baisch G, Öhrlein R, Ernst B (1996) Bioorg Med Chem Letters 6: 749Google Scholar
  136. 136.
    Baisch G, Öhrlein R, Streiff M, Ernst B (1996) Bioorg Med Chem Letters 6: 759Google Scholar
  137. 137.
    Baisch G, Öhrlein R, Katapodis A, Ernst B (1996) Bioorg Med Chem Letters 6: 755Google Scholar
  138. 138.
    Borsig L, Ivanov SI, Hermann GF, Kragl U, Wandrey C, Berger EG (1995) Biochem Biophys Res Commun 210: 14Google Scholar
  139. 139.
    Herrmann GF, Wang P, Shen G-J, Garcia-Junceda E, Khan S, Matta KL, Wong C-H (1994) J Org Chem 59: 6356Google Scholar
  140. 140.
    Herrmann GF, Krezdorn C, Malissard M, Kleene R, Paschold H, Weuster-Botz D, Kragl U, Berger EG, Wandrey C (1995) Prot Expr Purif 6: 72Google Scholar
  141. 141.
    Nakazawa K, Furukawa K, Narimatsu H, Kobata A (1993) J Biochem 113: 747Google Scholar
  142. 142.
    Krezdorn CH, Watzele G, Kleene RB, Ivanov SX, Berger EG (1993) Eur J Biochem 212: 113Google Scholar
  143. 143.
    Larsen RD, Rajan VP, Ruff MM, Kukowska-Latallo J, Cummings R, Lowe JB (1989) Proc Natl Acad Sci USA 86: 8227Google Scholar
  144. 144.
    Joziasse DH, Shaper NL, Van den Eijnden DH, Van der Spoel A, Shaper JH (1990) Eur J Biochem 191: 75Google Scholar
  145. 145.
    Seto NOL, Palcic MM, Hindsgaul O, Bundle DR, Narang S (1995) Eur J Biochem 234–323Google Scholar
  146. 146.
    Herrmann GF, Wang P, Shen G-J, Wong C-H (1994) Angew Chem Int Ed Engl 33: 1241Google Scholar
  147. 147.
    Williams MA, Kitagawa H, Datta AK, Paulson JC, Jamieson JC (1995) Glycoconjugate J 12: 755Google Scholar
  148. 148.
    Sarkar M, Schachter H (1992) Glycobiology 2: 483Google Scholar
  149. 149.
    Sarkar M (1994) Glycoconjugate J 11: 204Google Scholar
  150. 150.
    White T, Bennett EP, Takio K, Sorensen T, Bonding N, Clausen H (1995) J Biol Chem 270: 24156Google Scholar
  151. 151.
    Homa FL, Baker CA, Thomsen DR, Elhammer AP (1995) Prot Expr Purif 6: 141Google Scholar
  152. 152.
    Kukowska-Latallo JF, Larsen RD, Nair RP, Lowe JB (1990) Genes Dev 4: 1288Google Scholar
  153. 153.
    Gersten KM, Natsuka S, Trichera M, Petryniak B, Kelly RJ, Hiraiwa N, Jenkins NA; Gilbert DJ, Copeland NG, Lowe JB (1995) J Biol Chem 270: 25047Google Scholar
  154. 154.
    De Vries T, Srnka CA, Palcic MM, Swiedler SJ, Van den Eijnden DH (1995) J Biol Chem 270: 8712Google Scholar
  155. 155.
    Feingold DS, Barber GA (1990) Nucleotide sugars. In: Dey PM, Harborne JB (eds) Methods in Plant Biochemistry Vol 2. Academic Press, New York, p 39Google Scholar
  156. 156.
    Gabriel O, van Lenten L (1978) The interconversion of monosaccharides. In: Manners DJ (ed) International Review of Biochemistry Biochemistry of Carbohydrates II Vol 16. University Park Press, Baltimore, p. 1Google Scholar
  157. 157.
    Stoddart RW (1984) Sugar nucleotides and cyclitols. In: Stoddart RW The biosynthesis of polysaccharides. Croom Helm, London, p 27Google Scholar
  158. 158.
    Adelhorst K, Whitesides GM (1993) Carbohydr Res 242: 69Google Scholar
  159. 159.
    Arlt M, Hindsgaul O (1995) J Org Chem 60: 14Google Scholar
  160. 160.
    Ichikawa Y, Sim MM, Wong C-H (1992) J Org Chem 57: 2943Google Scholar
  161. 161.
    Schmidt RR, Wegmann B, Jung K-H (1991) Liebigs Ann Chem: 121Google Scholar
  162. 162.
    Müller T, Schmidt RR (1995) Angew Chem Int Ed Engl 34: 1328Google Scholar
  163. 163.
    Srivastava G, Hindsgaul O, Palcic MM (1993) Carbohydr Res 245: 137Google Scholar
  164. 164.
    Gokhale UB, Hindsgaul O, Palcic MM (1990) Can J Chem 68: 1063Google Scholar
  165. 165.
    Lindhorst TK, Thiem J (1990) Liebigs An Chem: 1237Google Scholar
  166. 166.
    Lindhorst TK, Thiem J (1991) Carbohydr Res 209: 119Google Scholar
  167. 167.
    Leon B, Lindhorst TK, Rieks-Everdiking A, Klaffke W (1994) Synthesis July: 689Google Scholar
  168. 168.
    Hällgren C, Hindsgaul O (1995) J Carbohydr Chem 14: 453Google Scholar
  169. 169.
    Kochetkov K, Shibaev VN (1973) Adv Carbohydr Chem Biochem 28: 304Google Scholar
  170. 170.
    Klaffke W (1994) Carbohydrates in Europe 10: 9Google Scholar
  171. 171.
    Williams N, Wander J (1980) Deoxy and branched-chain sugars. In: Pigman W, Horton D (eds) The Carbohydrates Chemistry, Biochemistry Vol 1B. Academic Press, New York, p 761Google Scholar
  172. 172.
    Beck E (1982) Branched-chain sugars. In: Loewus FA, Tanner W (eds) Encyclopedia of plant physiology New Series Volume 13A Carbohydrates I Intracellular Carbohydrates. Springer, Berlin Heidelberg New York, p 124Google Scholar
  173. 173.
    Flowers HM (1981) Adv Carbohydr Chem Biochem 39: 279.Google Scholar
  174. 174.
    Shibaev VN (1978) Pure Appl Chem 50: 1421Google Scholar
  175. 175.
    Shibaev VN, Danilov LL, Druzhinina TN, Gogolashwili LM, Maltsev SD (1982) FEBS Lett 139: 177Google Scholar
  176. 176.
    Ashwell G, Volk WA (1965) J Biol Chem 240: 4549Google Scholar
  177. 177.
    Aspinall GO (1981) Constitution of cell wall polysaccharides. In: Tanner W, Loewus FA (eds) Plant carbohydrates I Intracellular carbohydrates Vol 13 B. Springer, Berlin Heidelberg New York, p 3Google Scholar
  178. 178.
    Barber GA (1968) Biochim Biophys Acta: 68Google Scholar
  179. 179.
    Barber GA (1962) Biochem Biophys Res Commun 8: 204Google Scholar
  180. 180.
    Barber GA (1962) Biochemistry 1: 463Google Scholar
  181. 181.
    Beevers L (1982) Amino sugars—Plants and fungi. In: Loewus FA, Tanner W (eds) Encyclopedia of plant physiology New Series Volume 13A Carbohydrates I Intracellular Carbohydrates. Springer, Berlin Heidelberg New York, p 103Google Scholar
  182. 182.
    Bevill RD (1968) Biochem Biophys Res Commun 30: 595Google Scholar
  183. 183.
    Broschat KO, Chang S, Serif GS (1985) Eur J Biochem 153: 397Google Scholar
  184. 184.
    Chang S, Duerr B, Serif GS (1988) J Biol Chem 263: 1693Google Scholar
  185. 185.
    Crawley SC, Hindsgaul O, Ratcliffe RM, Lomontagne LR (1989) Carbohydr Res 193 249Google Scholar
  186. 186.
    De Vries T, Van den Eijnden DH (1992) Histochem J 24: 761Google Scholar
  187. 187.
    Dumas DP, Ichikawa Y, Wong C-H, Lowe JB, Nair RP (1991) Bioorg Med Chem Letters 1: 425Google Scholar
  188. 188.
    Elbein AD, Heath EC (1965) J Biol Chem 240: 1926Google Scholar
  189. 189.
    Feingold DS (1982) Aldo (and Keto) hexoses and uronic acids. In: Loewus FA, Tanner W (eds) Encyclopedia of plant physiology New Series Volume 13A Carbohydrates I Intracellular Carbohydrates. Springer, Berlin Heidelberg New York, p 3Google Scholar
  190. 190.
    Floss HG, Beale JM (1989) Angew Chem Int Ed Engl 28: 146Google Scholar
  191. 191.
    Franz G (1982) Glycosylation of heterosides (glycosides). In: Loewus FA, Tanner W (eds) Encyclopedia of plant physiology New Series Volume 13A Carbohydrates I Intracellular Carbohydrates. Springer, Berlin Heidelberg New York, p 384Google Scholar
  192. 192.
    Gabriel O (1973) Adv Chem Ser 17: 387Google Scholar
  193. 193.
    Gaugler RW, Gabriel O (1973) J Biol Chem 248: 6041Google Scholar
  194. 194.
    Gilbert JM, Matsuhashi M, Strominger JL (1965) J Biol Chem 240: 1305Google Scholar
  195. 195.
    Ginsburg V (1964) Adv Enzymol 26: 35Google Scholar
  196. 196.
    Ginsburg V (1961) J Biol Chem 236: 2389Google Scholar
  197. 197.
    Ginsburg V (1960) J Biol Chem 235: 2196Google Scholar
  198. 198.
    Glaser L, Zarkowsky H, Ward L (1972) Meth Enzymol 28: 446Google Scholar
  199. 199.
    Glaser L, Zarkowsky H (1971) Enzymes 5: 465Google Scholar
  200. 200.
    Glaser L, Kornfeld S (1961) J Biol Chem 236: 1795Google Scholar
  201. 201.
    Gonzalez-Porque P, Strominger JL (1972) J. Biol Chem 247: 6748Google Scholar
  202. 202.
    Gräfe U (1992) Biochemie der Antibiotika Struktur-Biosynthese-Wirkmechanismus. Spektrum, HeidelbergGoogle Scholar
  203. 203.
    Grisebach H (1978) Adv Carbohydr chem Biochem 35: 81Google Scholar
  204. 204.
    Hasegawa T, Kakushima M, Hatori M, Aburaki S, Kakinuma S, Furumai T, Oki T (1993) J Antibiotics 46: 598Google Scholar
  205. 205.
    Holmes EH (1993) Glycobiology 3: 77Google Scholar
  206. 206.
    Jarvis BW, Hutchinson CR (1994) Arch Biochem Biophys 308: 175Google Scholar
  207. 207.
    Kennedy JF, White CA (1983) Bioactive carbohydrates in chemistry biochemistry, biology. Ellis Horwood, ChichesterGoogle Scholar
  208. 208.
    Liao T-H, Barer GA (1972) Biochim Biophys Acta 276: 85Google Scholar
  209. 209.
    Markovitz A (1964) J Biol Chem 239: 2091Google Scholar
  210. 210.
    Markovitz A (1963) Federation Proc 22: 464Google Scholar
  211. 211.
    Martin JF (1984) Biosynthesis, regulation, and genetics of polyene macrolide antibiotics. In: Omura S (ed) Macrolide antibiotics Chemistry Biology, and Practice, Academic Press, Orlando, 405Google Scholar
  212. 212.
    Marumo K, Lindqvist L, Verma A, Weintraub A, Reeves PR, Lindberg AA (1992) Eur J Biochem 204: 539Google Scholar
  213. 213.
    Matsuhashi S, Strominger JL (1967) J Biol Chem 242: 3494Google Scholar
  214. 214.
    Matsuhashi M, Strominger JL (1966) J Biol Chem 241: 4738Google Scholar
  215. 215.
    Matsuhashi S, Strominger JL (1966) Meth Enzymol 8: 310Google Scholar
  216. 216.
    Matsuhashi M, Strominger JL (1964) J Biol Chem 239: 2454Google Scholar
  217. 217.
    Matsuhashi M (1963) Federation Proc 22: 465Google Scholar
  218. 218.
    Melo A, Elliott WH, Glaser L (1968) J Biol Chem 243: 1467Google Scholar
  219. 219.
    Melo A, Glaser L (1968) J Biol Chem 243: 1475Google Scholar
  220. 220.
    Oerskov F, Oerskov I, Jann B, Jann K, Müller-Seitz E, Westphal O (1967) Acta path et microbiol scandinav 71: 339Google Scholar
  221. 221.
    Ohashi H, Matsuhashi M, Matsuhashi S (1971) J Biol chem 246: 2325Google Scholar
  222. 222.
    Okazaki R, Okazaki T, Strominger JL, Michelson AM (1962) J Biol Chem 237: 3014Google Scholar
  223. 223.
    Pape H, Brillinger GU (1973) Arch Mikrobiol 88: 25Google Scholar
  224. 224.
    Pazur JH, Shuey EW (1961) J Biol Chem 236: 1780Google Scholar
  225. 225.
    Percival E (1963) The monodsaccharides. In: Florkin M, Stotz EH (eds) Comprehensive biochemistry Carbohydrates Vol 5. Elsevier Amsterdam, 1Google Scholar
  226. 226.
    Reeves PR (1993) TIG 9: 17Google Scholar
  227. 227.
    Rubenstein PA, Strominger JL (1974) J Biol Chem 249: 3782Google Scholar
  228. 228.
    Selvendran RR, O'Neill MA (1982) Plant glycoproteins. In: Loewus FA, Tanner W (eds) Encyclopedia of plant physiology New Series Volume 13A Carbohydrates I Intracellular Carbohydrates. Springer, Berlin Heidelberg New York, p 515Google Scholar
  229. 229.
    Sutherland IW (1990) Biotechnology of microbial exopolysaccharides. Cambridge University Press, Cambridge New YorkGoogle Scholar
  230. 230.
    Thompson MW, Strohl WR, Floss HG (1992) J Gen Microbiol 138: 779Google Scholar
  231. 231.
    Thorson JS, Liu H-W (1993) J Am Chem Soc 115: 7539Google Scholar
  232. 232.
    Thorson JS, Lo SF, Liu H-W (1993) J Am Chem Soc 115: 6993Google Scholar
  233. 233.
    Thorson JS, Oh E, Liu H-W (1992) J Amer Chem Soc 114: 6941Google Scholar
  234. 234.
    Tonn SJ, Gander JE (1979) Ann Rev Microbiol 33: 169Google Scholar
  235. 235.
    Vanek Z, Majer J (1967) Macrolide antibiotics. In: Gottlieb D, Shaw PD (eds) Antibiotics Vol 2. Springer, New York Heidelberg 154Google Scholar
  236. 236.
    Vara JA, Hutchinson CR (1988) J Biol chem 263: 14992Google Scholar
  237. 237.
    Volk WA, Ashwell G (1963) Bichem Biophys Res Commun 12: 116Google Scholar
  238. 238.
    Wahl HP, Grisebach H (1979) Biochim Biophys Acta 568: 243Google Scholar
  239. 239.
    Weigel TM, Liu L-D, Liu H-W (1992) Biochemistry 31: 2129Google Scholar
  240. 240.
    Weigel TM, Miller VP, Liu H-W (1992) Biochemistry 31: 2140Google Scholar
  241. 241.
    Winkler NW, Markovitz A (1971) J Biol Chem 246: 5868Google Scholar
  242. 242.
    Wong C-H, Dumas, DP, Ichikawa Y, Koseki K, Danishefsky SJ, Weston BW, Lowe JB (1992) J Amer Chem Soc 114: 7321Google Scholar
  243. 243.
    Yamamoto K, Katayama I, Onoda Y, Inami M, Kumagai H, Tochikura T (1993) Arch Biochem Biophys 300: 694Google Scholar
  244. 244.
    Yamamoto K, Maruyama T, Kumagai H, Tochikura T, Seno T, Yamaguchi H (1984) Agric Biol Chem 48: 823Google Scholar
  245. 245.
    Ishihara H, Massaro DJ, Heath EC (1968) J Biol Chem 243: 1103Google Scholar
  246. 246.
    Ishihara H, Heath EC (1968) J Biol Chem 243: 1110Google Scholar
  247. 247.
    Butler W, Serif GS (1985) Biochim Biophys Acta 829: 238Google Scholar
  248. 248.
    Isselbacher K (1958) J Biol Chem 232: 429Google Scholar
  249. 249.
    Abraham HD, Howell RR (1969) J Biol Chem 244: 545Google Scholar
  250. 250.
    Kingsley DM, Kozarsky KF, Hobbie L, Krieger M (1986) Cell 44: 749Google Scholar
  251. 251.
    Szumilo T, Zeng Y, Pastuszak I, Drake R, Szumilo H, Elbein AD (1996) J Biol Chem 271: 13147Google Scholar
  252. 252.
    Gross KC, Pharr DM (1982) Plant Physiol 69: 117Google Scholar
  253. 253.
    Dressler K, Bliedlingmaier, S, Grossberger H, Kemmer J, Nölle U, Rodmanis-Blumer A, Hess D (1982) Z Pflanzenphysiologie 107: 409Google Scholar
  254. 254.
    Maretzki A, Thom M (1978) Plant Physiol 61: 544Google Scholar
  255. 255.
    Schachter H, Ishihara H, Heath EC (1972) Meth Enzymol 28: 285Google Scholar
  256. 256.
    Ichikawa Y, Wang R, Wong C-H (1994) Meth Enzymol 247: 107Google Scholar
  257. 257.
    Toone EJ, Whitesides GM (1991) Am Chem Soc Sympos Ser 466: 1Google Scholar
  258. 258.
    Unverzagt C, Paulson JC (1990) J Amer Chem Soc 112: 9308Google Scholar
  259. 259.
    Wong C-H, Haynie SL, Whitesides GM (1982) J Org Chem 47: 5416Google Scholar
  260. 260.
    Kleczkowski LA (1994) Phytochemistry 37: 1507Google Scholar
  261. 261.
    Turnquist RL, Hansen RG (1973) Uridine diphosphoryl glucose pyrophosphorylase. In: Boyer PD (ed) The Enzymes Vol VIII. Academic Press, New York, 51Google Scholar
  262. 262.
    Wong C-H, Dreckhammer DG, Sweers HM (1988) Am Chem Soc Sympos Ser 374: 30Google Scholar
  263. 263.
    Heidlas JE, Lees WJ, Pale P, Whitesides GM (1992) J Org Chem 57: 146Google Scholar
  264. 264.
    Ropp PA, Cheng P-W (1990) Anal Biochem 187: 104Google Scholar
  265. 265.
    Drake RR, Evans RK, Wolf MJ, Haley BE (1989) J Biol Chem 264: 11928Google Scholar
  266. 266.
    Konishi Y, Tanizawa K, Muroya S, Fukui T (1993) J Biochem 114: 61Google Scholar
  267. 267.
    Katsube T, Kazuta Y, Tanizawa K, Fukui T (1991) Biochemistry 30: 8546Google Scholar
  268. 268.
    Hossain SA, Tanizawa K, Kazuta Y, Fukui T (1994) J Biochem 115: 965Google Scholar
  269. 269.
    Elling L, Kula M-R (1994) J Biotechnol 34: 157Google Scholar
  270. 270.
    Elling L (1996) Phytochemistry 42: 955Google Scholar
  271. 271.
    Herrmann GF, Elling L, Berger EG, Wandrey C (1995) Bioorg Med Chem 5: 673Google Scholar
  272. 272.
    Zervosen A, Stein A, Adrian H, Elling L (1996) Tetrahedron 52: 2395Google Scholar
  273. 273.
    Elling L, Grothus M, Kula M-R (1993) Glycobiology 3: 349Google Scholar
  274. 274.
    Elling L, Kula M-R (1995) Enzyme Microb Technol 17: 929Google Scholar
  275. 275.
    Zervosen A, Elling L (1996) J Am Chem Soc 118: 1836Google Scholar
  276. 276.
    Hokke CH, Zervosen A, Elling L, Joziasse DH, Van den Eijnden (1996) Glycoconjugate J 13: 687Google Scholar
  277. 277.
    Korf U, Thimm J, Thiem J (1991) Synlett April: 313Google Scholar
  278. 278.
    Mengin-Lecreulx D, Van Heijenoort J (1993) J Bacteriol 175: 6150Google Scholar
  279. 279.
    Lang L, Kornfeld S (1984) Anal Biochem 140: 264Google Scholar
  280. 280.
    Look GC, Ichikawa Y, Shen G-S, Cheng P-W, Wong C-H (1993) J Org Chem 58: 4326Google Scholar
  281. 281.
    De Luca C, Lansing M, Martini I, Crescenzi F, Shen G-S, O'Regan M, Wong C-H (1995) J Am Chem Soc 117: 5869Google Scholar
  282. 282.
    De Luca C, Lansing M, Crescenzi F, Martini I, Shen G-J, O'Regan M, Wong C-H (1996) Bioorg Med Chem 4: 131Google Scholar
  283. 283.
    Lindqvist L, Kaiser R, Reeves PR, Lindberg AA (1993) Eur J Biochem 211: 763Google Scholar
  284. 284.
    Zervosen A, Elling L, Kula M-R (1994) Angew Chem Int Ed Engl 33: 571Google Scholar
  285. 285.
    Lindqvist L, Kaiser R, Reeves PR, Lindberg AA (1994) J Biol Chem 269: 122Google Scholar
  286. 286.
    Ballicora MA, Laughlin MJ, Fu Y, Okita TW, Barry GF, Preiss J (1995) Plant Physiol 109: 245Google Scholar
  287. 287.
    Okita TW Rodriguez RL, Preiss J (1981) J Biol Chem 256: 6944Google Scholar
  288. 288.
    Ichikawa Y, Liu JL-C, Shen G-J, Wong C-H (1991) J Amer Chem Soc 113: 6300Google Scholar
  289. 289.
    Ichikawa Y, Shen G-J, Wong C-H (1991) J Amer Chem Soc 113: 4698Google Scholar
  290. 290.
    Ichikawa Y, Lin Y-C, Dumas DP, Shen G-J, Garcia-Junceda E, Williams MA, Bayer R, Ketcham C, Walker LE, Paulson JC, Wong C-H (1992) J Amer Chem Soc 114:9283Google Scholar
  291. 291.
    David S, Augé C (1987) Pure Appl Chem 59: 1501Google Scholar
  292. 292.
    Simon ES, Toone EJ, Ostroff G, Bednarski M, Whitesides GM (1989) Meth Enzymol 179: 275Google Scholar
  293. 293.
    Augé C, Fernandez R, Gautheron C (1990) Carbohydr Res 200: 257Google Scholar
  294. 294.
    Thiem J, Treder W (1986) Angew Chem Int Ed Engl 25: 1100Google Scholar
  295. 295.
    Thiem J, Stangier P (1990) Liebigs Ann Chem: 1101Google Scholar
  296. 296.
    Kittelmann M, Klein T, Kragl U, Wandrey C, Ghisalba O (1995) Appl Microbiol Biotechnol 44: 59Google Scholar
  297. 297.
    Shames SL, Simon ES, Christopher CW, Schmid W, Whitesides GM, Yang L-L (1991) Glycobiology 1: 187Google Scholar
  298. 298.
    Shen G-J, Liu JL-C, Wong C-H (1992) Biocatalysis 6: 31Google Scholar
  299. 299.
    Augé C, Gautheron C (1988) Tetrahedron Lett 29: 789Google Scholar
  300. 300.
    Brossmer R, Gross HJ (1994) Meth Enzymol 247: 153Google Scholar
  301. 301.
    Brossmer R, Gross HJ (1994) Meth Enzymol 247: 177Google Scholar
  302. 302.
    Sugai T, Lin C-H, Shen G-J, Wong C-H (1995) Bioorg Med Chem 3: 313Google Scholar
  303. 303.
    Grier TJ, Rasmussen JR (1982) Anal Biochem 127: 100Google Scholar
  304. 304.
    Klaffke W (1995) Carbohydr Res 266: 285Google Scholar
  305. 305.
    Leon B, Lindhorst TK, Rieks-Everdiking A, Klaffke W (1994) Synthesis July: 689Google Scholar
  306. 306.
    McDowell W, Grier TJ, Rasmussen JR, Schwarz RT (1987) Biochem J 248: 523Google Scholar
  307. 307.
    Pallanca JE, Turner NJ (1993) J Chem Soc Perkin Trans 1: 3017Google Scholar
  308. 308.
    Simon ES, Grabowski S, Whitesides GM (1990) J Org Chem 55: 1834Google Scholar
  309. 309.
    Szumilo T, Drake RR, York JL, Elbein AD (1993) J Biol Chem 268: 17943Google Scholar
  310. 310.
    Sa-Correira I, Darzins A, Wang S-K, Berry A, Chakrabarty AM (1987) J Bacteriol 169: 3224Google Scholar
  311. 311.
    Elling L, Ritter JE, Verseck S (1996) Glycobiology 6: 591Google Scholar
  312. 312.
    Stiller R, Thiem J (1992) Liebigs Ann Chem 5: 467Google Scholar
  313. 313.
    Thiem J, Wiemann T (1991) Angew Chem Int Ed Engl 30: 1163Google Scholar
  314. 314.
    Augé C, David S, Mathieu C, Gautheron C (1984) Tetrahedron Lett 25: 1467Google Scholar
  315. 315.
    Bauer AJ, Rayment I, Frey PA, Holden HM (1991) Proteins: Structure Function Genetics 9: 135Google Scholar
  316. 316.
    Dörmann P, Benning C (1996) Arch Biochem Biophys 327: 27Google Scholar
  317. 317.
    Wong C-H, Wang R, Ichikawa Y (1992) J Org Chem 57: 4343Google Scholar
  318. 318.
    Heidlas JE, Lees WJ, Whitesides GM (1992) J Org Chem 57: 152Google Scholar
  319. 319.
    Bülter T, Wandrey C, Elling L (1996) unpublished resultsGoogle Scholar
  320. 320.
    Nassau PM, Martin SL, Brown RE, Weston A, Monsey D, McNeil MR, Duncan K (1996) J Bacteriol 178: 1047Google Scholar
  321. 321.
    Gygax D, Spies P, Winkler T, Pfaar U (1991) Tetrahedron 47: 5119Google Scholar
  322. 322.
    Drake RR, Zimniak P, Haley BE, Lester R, Elbein AD, Radominska A (1991) J Biol Chem 266: 23257Google Scholar
  323. 323.
    Toone EJ, Simon ES, Whitesides GM (1991) J Org Chem 56: 5603Google Scholar
  324. 324.
    Liljebjelke K, Adolphson R, Baker K, Doon RL, Mohnen D (1995) Anal Biochem 225: 296Google Scholar
  325. 325.
    Kyossev ZN, Drake RR, Kyosseva S, Elbein AD (1995) Eur J Biochem 228: 109Google Scholar
  326. 326.
    Gubler M, Appoldt Y, Keck W (1996) J Bacteriol 178: 906Google Scholar
  327. 327.
    Marquardt JL, Siegele DA, Kolter R, Walsh CT (1992) J Bacteriol 174: 5748Google Scholar
  328. 328.
    Brown ED, Marquardt JL, Lee JP, Walsh CT, Anderson KS (1994) Biochemistry 33: 10638Google Scholar
  329. 329.
    Benson TE, Marquardt JL, Marquardt AC, Etzkorn FA, Walsh CT (1993) Biochemistry 32: 2024Google Scholar
  330. 330.
    Tayeh MA, Dotson GD, Clemens JC, Woodard RW (1995) Prot Expr Purif 6: 757Google Scholar
  331. 331.
    Stein A, Kula M-R, Elling L, Verseck S, Klaffke W (1995) Angew Chemie Int Ed Engl 34: 1748Google Scholar
  332. 332.
    Stein A (1995) PhD thesis, Heinrich-Heine-University Düsseldorf, Düsseldorf, GermanyGoogle Scholar
  333. 333.
    Lindqvist L, Schweda KH, Reeves PR, Lindberg AA (1994) Eur J Biochem 225: 863Google Scholar
  334. 334.
    Tsuboi KK, Fukunga K, Petricciani JC (1969) J Biol Chem 244: 1008Google Scholar
  335. 335.
    Hsiao P-H, Su J-C, Sung H-Y (1981) Proc Natl Sci Counc B ROC 5: 31Google Scholar
  336. 336.
    Ritter JE, Berlin C, Elling L (1996) Anal Biochem 234: 74Google Scholar
  337. 337.
    Kleczkowski LA, Viland P, Olsen O-A (1993) Z Naturforsch 48c: 457Google Scholar
  338. 338.
    Lehle L, Tanner W (1995) Protein glycosylation in yeast. In: Montreuil J, Vliegenthart JFG, Schachter H (eds) (1995) New Comprehensive Biochemistry Vol 29a, Glycoproteins. Elsevier, Amsterdam, 475Google Scholar
  339. 339.
    Flitsch SL, Taylor JP, Turner NJ (1991) J Chem Soc Chem Commun: 382Google Scholar
  340. 340.
    Wang P, Shen G-S, Wang Y-F, Ichikawa Y, Wong C-H (1993) J Org Chem 58: 3985Google Scholar
  341. 341.
    Kornfeld RH, Ginsburg V (1966) Biochim Biophys Acta 117: 79Google Scholar
  342. 342.
    Munch-Petersen A (1956) Acta Chem Scand 10: 928Google Scholar
  343. 343.
    Munch-Petersen A (1962) Meth Enzymol 5: 171Google Scholar
  344. 344.
    Braell WA, Tyo MA, Krag SS, Robins PW (1976) Anal Biochem 74: 484Google Scholar
  345. 345.
    Niggemann J, Thiem J (1992) Liebigs Ann Chem 5: 535Google Scholar
  346. 346.
    Preiss J, Greenberg E (1972) Meth Enzymol 28: 281Google Scholar
  347. 347.
    Frey PA (1987) Complex pyridine-dependent transformations. In: Dolphin D, Poulson R, Avamovic O (eds): Pyridine nucleotide coenzymes Chemical biochemical, medical aspects Vol 2B. Wiley, New York, 462Google Scholar
  348. 348.
    Glaser L (1959) J Biol Chem 234: 2801Google Scholar
  349. 349.
    Echt CS, Chourey PS (1985) Plant Physiol 79: 530Google Scholar
  350. 350.
    Copeland L (1990) Enzymes of surcose metabolism In: Lea PJ (ed) Methods in Plant Biochemistry Vol 3. Academic Press, New York, 73Google Scholar
  351. 351.
    Neufeld EF, Hassid WZ (1963) Adv Carbohydr Chem 18: 309Google Scholar
  352. 352.
    Avigad G (1982) Surcose and other disaccharides. In: Loewus FA, Tanner W (eds) Encyclopedia of plant physiology. New Series Volume 13A Carbohydrates I Intracellular Carbohydrates. Springer-Verlag, Berlin, 217Google Scholar
  353. 353.
    Elling L, Kula M-R (1993) J Biotechnol 29: 277Google Scholar
  354. 354.
    Elling L, Grothus M, Zervosen A, Péus M, Helfer A, Stein A, Adrian H, Kula M-R (1995) Biotechnol Appl Biochem 21: 29Google Scholar
  355. 355.
    Elling L (1995) Glycobiology 5: 201Google Scholar
  356. 356.
    Peters J, Brockamp H-P, Minuth T, Grothus M, Steigel A, Kula M-R, Elling L (1993) Tetrahedron: Asymmetry 4: 1173Google Scholar
  357. 357.
    Grothus M, Steigel A, Kula M-R, Elling L (1994) Carbohydrate Letters 1: 83Google Scholar
  358. 358.
    Mengin-Lecreulx D, van Heijenoort J (1994) J Bacteriol 176: 5788Google Scholar
  359. 359.
    Drake RR, Elbein AD (1992) Glycobiology 2: 279Google Scholar
  360. 360.
    Radominska A, Drake RR (1994) Meth Enzymol 230: 330Google Scholar
  361. 361.
    Fukusawa T, Obonai K, Segawa T, Nogi Y (1980) J Biol Chem 255: 2705Google Scholar
  362. 362.
    Nelsestuen GL, Kirkwood S (1971) J Biol Chem 246: 7533Google Scholar
  363. 363.
    Nunez HA, Barker R (1976) Biochemistry 15: 3843Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Lothar Elling
    • 1
  1. 1.Institut für EnzymtechnologieJülichGermany

Personalised recommendations