Advertisement

Production of poly(hydroxyalkanoic acid)

  • Sang Yup Lee
  • Ho Nam Chang
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 52)

Abstract

Poly(hydroxyalkanoic acid) [PHA] is accumulated by numerous microorganisms as an energy reserve material under unbalanced growth conditions in the presence of excess carbon source. In spite of being a good candidate for biodegradable thermoplastic, their high price compared with conventional plastics currently in use has limited their availability in a wide range of applications. With the aim of reducing the high production cost of PHA, much effort is currently being devoted to improve productivity by employing various microorganisms and by developing efficient culture techniques. Several processes recently developed and employed for the production of PHA by various bacteria are described.

Keywords

Propionic Acid Corn Steep Liquor Octanoic Acid Complex Nitrogen Source Carbon Dioxide Evolution Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Byrom D (1987) TIBTECH 5: 246Google Scholar
  2. 2.
    Holmes PA (1985) Phys. Technol. 16: 32CrossRefGoogle Scholar
  3. 3.
    Doi Y (1990) Microbial Polyesters. VCH Publishers, New YorkGoogle Scholar
  4. 4.
    Brandl H, Gross R, Lenz R, Fuller RC (1990) Adv. Biochem. Eng. Biotechnol. 41: 77Google Scholar
  5. 5.
    Anderson AJ, Dawes EA (1990) Microbiol. Rev. 54: 450Google Scholar
  6. 6.
    Steinbüchel A (1991) Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials Macmillan, London, p 123Google Scholar
  7. 7.
    King PP (1982) J. Chem. Technol. Biotechnol. 32: 2CrossRefGoogle Scholar
  8. 8.
    Utteley NL (1986) Proc. Biotech'86, p. 171, Online Publications, PinnerGoogle Scholar
  9. 9.
    Inoue Y, Yoshie N (1992) Prog. Polym. Sci. 17: 571CrossRefGoogle Scholar
  10. 10.
    Steinbüchel A, Hustede E, Liebergesell M, Piper U, Timm A, Valentin H (1992) FEMS Microbiol. Rev. 103: 217Google Scholar
  11. 11.
    Lafferty Rm, Korsatko B, Korsatko W (1988) Microbial Production of poly-β-hydroxybutyric acid. In Rehm HJ, Reed G (eds) Biotechnology, vol 6b, VCH, Weinheim, p 136Google Scholar
  12. 12.
    Valentin HE, Lee EY, Choi CY, Steinbüchel A (1994) Appl. Microbiol. Biotechnol. 41: 710CrossRefGoogle Scholar
  13. 13.
    Hrabak O (1992) FEMS Microbiol. Rev. 103: 251Google Scholar
  14. 14.
    Page WJ (1992) FEMS Microbiol. Rev. 103: 149CrossRefGoogle Scholar
  15. 15.
    Suzuki T, Yamane T, Shimizu S (1986) Appl. Microbiol. Biotechnol. 24: 370CrossRefGoogle Scholar
  16. 16.
    Ueda S, Matsumoto S, Takagi A, Yamane T (1992) Appl. Environ. Microbiol. 58: 3574Google Scholar
  17. 17.
    Daniel M, Kim JH, Lebeault JM (1992) Appl. Microbiol. Biotechnol. 37: 702Google Scholar
  18. 18.
    Preusting H, Houten R, Hoefs A, Langenberghe E, Favre-Bulle O, Witholt B (1993) Biotechnol. Bioeng. 41: 550CrossRefGoogle Scholar
  19. 19.
    Fidler S, Dennis D (1992) FEMS Microbiol. Rev. 103: 231CrossRefGoogle Scholar
  20. 20.
    Lee SY YIM KS Chang HN, Chang YK (1994) J. Biotechnol. 32: 203CrossRefGoogle Scholar
  21. 21.
    Doi Y, Segawa A, Kawaguchi Y, Kunioka M (1990) FEMS Microbiol. Lett. 67: 165CrossRefGoogle Scholar
  22. 22.
    Bradel R, Kleinke A, Reichert K (1989) Proc. DECHEMA Biotechnology Conferences 3, VCH, Weinheim, p 207Google Scholar
  23. 23.
    Yamane T (1993) Biotechnol. Bioeng. 41: 165CrossRefGoogle Scholar
  24. 24.
    Yamane T (1992) FEMS Microbiol. Rev 103: 257CrossRefGoogle Scholar
  25. 25.
    Dawes EA (1990) Novel Microbial Polymers. In: Dawes EA (ed) Novel biodegradable microbial polymers. Kluwer, Dordrecht, p 3Google Scholar
  26. 26.
    Holmes PA, Wright, LF, Collins SH (1981) European Patent 0052459Google Scholar
  27. 27.
    Doi Y, Segawa A, Nakamura S, Kunioka M (1990) Production of biodegradable copoolyesters by Alacaligenes eutrophus. In. Novel Biodegradable Microbial Polymers (ed. Dawes EA), p. 37, Kluwer, DordrechtGoogle Scholar
  28. 28.
    Baptist JN (1959) US Patent 3036959Google Scholar
  29. 29.
    Baptist Jn (1960) US Patent 3044942Google Scholar
  30. 30.
    Byrom D (1991) Miscellaneous Biomaterials. In: Biomaterials (ed. Byrom D), p. 333, Macmillan, LondonGoogle Scholar
  31. 31.
    Byrom D (1992) FEMS Microbiol. Rev. 103: 247Google Scholar
  32. 32.
    Steinbüchel A (1992) Curr. Opin. Biotechnol. 3: 291CrossRefGoogle Scholar
  33. 33.
    Laferty RM (1979) US Patent 4138291Google Scholar
  34. 34.
    Senior PJ, Collins SH, Richardson KR (1986) European Patent 204442Google Scholar
  35. 35.
    Aldererte JE, Karl DW, Park CH (1993) Biotechnol. Prog. 9: 520CrossRefGoogle Scholar
  36. 36.
    Schlegel HG, Gottschalk G, Bartha R (1961) Nature 191: 463CrossRefGoogle Scholar
  37. 37.
    Repaske R, Mayer R (1976) Appl. Environ. Microbiol. 32: 592Google Scholar
  38. 38.
    Ishizaki A, Tanaka K (1990) J. Ferment. Bioeng. 69: 170CrossRefGoogle Scholar
  39. 39.
    Ishizaki A, Tanaka K (1991) J. Ferment. Bioeng. 71:254CrossRefGoogle Scholar
  40. 40.
    Ishizaki A, Tanaka K (1992) Abstracts of International Symposium on Bacterial Polyhydroxyalkanoates'92 P117, GöttingenGoogle Scholar
  41. 41.
    Yamane T, Shimizu S (1984) Adv. Biochem. Eng. Biotechnol. 30: 147Google Scholar
  42. 42.
    Chang HN, Furusaki S (1991) Adv. Biochem. Eng. Biotechnol. 44: 27Google Scholar
  43. 43.
    Lee YW, Yoo YJ (1991) Korean J. Appl. Microbiol. Biotechnol. 19: 186Google Scholar
  44. 44.
    Suzuki T, Yamane T, Shimizu S (1986) J. Ferment. Technol. 64: 317CrossRefGoogle Scholar
  45. 45.
    Luli GW, Schlasner SM, Ordaz DE Mason M, Strohl WR (1987) Biotechnol. Techniq. 1: 225CrossRefGoogle Scholar
  46. 46.
    Park YS, Kai KK, Ijima S, Kobayashi T (1992) Biotechnol. Bioeng. 40: 686CrossRefGoogle Scholar
  47. 47.
    Chang HN, Lee SY (1994) Abstracts of Advances in Biopolymer Engineering, p. 15, Palm Coast, FLGoogle Scholar
  48. 48.
    Kim BS, Lee SC, Lee SY, Change HN, Chang YK, Woo SI (1994) Biotechnol. Bioeng. 43: 892CrossRefGoogle Scholar
  49. 49.
    Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI (1994) Enz. Microbiol. Technol. 16: 556CrossRefGoogle Scholar
  50. 50.
    Hangi UJ (1990) Pilot scale production of PHA with Alcaligenes latus. In: Novel Biodegradable Microbial Polymers (ed. Dawes EA), p. 65, Kluwer Publishers, DordrechtGoogle Scholar
  51. 51.
    Lafferty RM, Braunegg G (1984) European Patent 144017Google Scholar
  52. 52.
    Lafferty RM, Braunegg G (1984) European Patent 149744Google Scholar
  53. 53.
    Lafferty RM, Braunegg G (1988) US Patent 4786598Google Scholar
  54. 54.
    Lafferty RM, Braunegg G (1990) US Patent 4957861Google Scholar
  55. 55.
    Stockadale H, Ribbons DW, Dawes EA (1968) J. Bacteriol. 95: 1798Google Scholar
  56. 56.
    Ritchie GAF, Dawes EA (1969) Biochem. J. 112: 803Google Scholar
  57. 57.
    Ritchie GAF, Senior PJ, Dawes EA (1971) Biochem. J. 121: 308Google Scholar
  58. 58.
    Senior PJ, Dawes EA (1973) Biochem. J. 134: 225Google Scholar
  59. 59.
    Page WJ, Knosp O (1989) Appl. Environ. Microbiol. 55: 1334Google Scholar
  60. 60.
    Page WJ, Knosp O (1992) US Patent 5096819Google Scholar
  61. 61.
    Page WJ (1989) Appl. Microbiol. Biotechnol. 31: 329CrossRefGoogle Scholar
  62. 62.
    Page WJ (1992) Appl. Microbiol. Biotechnol. 38: 117CrossRefGoogle Scholar
  63. 63.
    Page WJ, Manchak J, Rudy B (1992) Appl. Environ. Microbiol. 58: 2866Google Scholar
  64. 64.
    Page WJ, Cornish A (1993) Appl. Environ. Microbiol. 59: 4236Google Scholar
  65. 65.
    Powell KA, Collins BA (1982) US Patent 4336334Google Scholar
  66. 66.
    Suzuki T, Yamane T, Shimizu S (1986) Appl. Microbiol. Biotechnol. 23: 322CrossRefGoogle Scholar
  67. 67.
    Suzuki T, Yamane T, Shimizu S (1986) Appl. Microbiol. Biotechnol. 24: 366CrossRefGoogle Scholar
  68. 68.
    Suzuki T, Deguchi H, Yamane T, Shimizu S, Gekko K (1988) Appl. Microbiol. Biotechnol. 27: 487Google Scholar
  69. 69.
    Ueda S, Matsumoto S, Takagi A, Yamane T (1992) FEMS Microbiol. Lett. 98: 57CrossRefGoogle Scholar
  70. 70.
    Kang CK, Lee HS, Kim JH (1993) Biotechnol. Lett. 15: 1017CrossRefGoogle Scholar
  71. 71.
    Bourque D, Ouellette B, Andre G, Groleau D (1992) Appl. Microbiol. Biotechnol. 37 7CrossRefGoogle Scholar
  72. 72.
    Huisman GW, Deleeuw O, Eggink G, Witholt B (1989) Appl. Environ. Microbiol. 55: 1949Google Scholar
  73. 73.
    Haywood GW, Anderson AJ, Dawes EA (1989) Biotechnol. Lett. 11: 471CrossRefGoogle Scholar
  74. 74.
    DeSmet MJ, Eggink G, Witholt B, Kingma J, Wynberg H (1983) J. Bacteriol. 154: 870Google Scholar
  75. 75.
    Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Appl. Enviorn. Microbiol. 54: 1977Google Scholar
  76. 76.
    Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Appl. Environ. Microbiol. 54: 2924Google Scholar
  77. 77.
    Timm A, Steinbüchel A (1990) Appl. Environ. Microbiol. 56: 3360Google Scholar
  78. 78.
    Haywood GW, Anderson AJ, Ewing EF Dawes EA (1990) Appl. Environ. Microbiol. 56: 3354Google Scholar
  79. 79.
    Huijberts GNM, Eggink G, DeWaard P, Huinsman GW, Witholt B (1992) Appl. Environ. Microbiol. 58: 536Google Scholar
  80. 80.
    Huijiberts GNM, DeRijk TC, DeWaard P, Eggink G (1994) J Bacteriol. 176: 1661Google Scholar
  81. 81.
    Steinbüchel A, Wiese S (1992) Appl. Microbiol. Biotechnol. 37: 691Google Scholar
  82. 82.
    Timm A, Wiese S, Steinbüchel A (1994) Appl. Microbiol. Biotechnol. 40: 669CrossRefGoogle Scholar
  83. 83.
    Ramsay BA, Saracovan I, Ramsay JA, Marchessault RH (1992) Appl. Environ. Microbiol. 58: 744Google Scholar
  84. 84.
    Saito Y, Doi Y (1993) Int. J Biol. Macromol. 15: 287CrossRefGoogle Scholar
  85. 85.
    Lenz RW, Kim YB, Fuller RC (1992) Biotechnol. Lett. 14: 445CrossRefGoogle Scholar
  86. 86.
    Kimura H, Yoshida Y, Doi Y (1992) Biotechnol. Lett. 14: 445CrossRefGoogle Scholar
  87. 87.
    Bertrand JL, Ramsay BA, Ramsay JA, Chavarie C (1990) Appl. Environ. Microbiol. 56: 3133Google Scholar
  88. 88.
    Gagnon KD, Lenz RW, Farris RJ (1992) Rubber Chem. Technol. 65: 761Google Scholar
  89. 89.
    Witholt B, Lageveen RG (1992) US Patent 5135859Google Scholar
  90. 90.
    Preusting H, Kingma, J, Witholt B (1991) Enzyme Microb. Technol. 13: 770CrossRefGoogle Scholar
  91. 91.
    Presuting H, Hazenberg W, Witholt B (1993) Enzyme Microb. Technol. 15: 311CrossRefGoogle Scholar
  92. 92.
    Ramsay BA, Saracovan I, Ramsay JA, Marchessault RH (1991) Appl. Environ. Microbiol. 57: 625Google Scholar
  93. 93.
    Shatzman AR (1990) Curr. Opin. Biotechnol. 1: 5CrossRefGoogle Scholar
  94. 94.
    Yee L, Blanch HW (1992) Bio/Technol. 10: 1550CrossRefGoogle Scholar
  95. 95.
    Schubert P, Steinbüchel A, Schlegel HG (1988) J. Bacteriol. 170: 5837Google Scholar
  96. 96.
    Slater SC, Voige WH, Dennis DE (1988) J. Bacteriol. 170: 4431Google Scholar
  97. 97.
    Peoples OP, Sinskey AJ (1989) J Biol. Chem. 264: 15293Google Scholar
  98. 98.
    Peoples OP, Sinskey AJ (1989) J. Biol. Chem. 264: 15298Google Scholar
  99. 99.
    Schubert P, Kruger N, Steinbüchel A (1991) J. Bacteriol. 173: 168Google Scholar
  100. 100.
    Janes B, Hollar J, Dennis De (1990) Molecular characterization of the poly-β-hydroxybutyrate biosynthetic pathway of Alacaligenes eutrophu H16. In: Novel Biodegradable Microbial Polymers (ed. Dawes EA), p. 175, Kluwer Academic Publishers, DordrechtGoogle Scholar
  101. 101.
    Kim BS, Lee SY, Chang HN (1992) Abstracts of International Symposium on Bacterial Polyhydroxyalkanoates '92, Göttingen, p. 120Google Scholar
  102. 102.
    Kim BS, Lee SY, Chang HN (1992) Biotechnol. Lett. 14: 811CrossRefGoogle Scholar
  103. 103.
    Lee SY, Chang HN (1993) Biotechnol. Lett. 15: 971CrossRefGoogle Scholar
  104. 104.
    Lee SY, Chang HN, Chang YK (1994) Ann. NY Acad. Sci. 721: 43CrossRefGoogle Scholar
  105. 105.
    Lee SY, Chang HN (1994) J. Environ. Polymer Degrad. 2: 169CrossRefGoogle Scholar
  106. 106.
    Gerdes K (1988) Bio/Technol. 6: 1402CrossRefGoogle Scholar
  107. 107.
    Haigermoser C. Chen GQ, Gorhmann E, Hrabak O, Schwab H (1993) J. Biotechnol. 28: 291CrossRefGoogle Scholar
  108. 108.
    Luli GW, Strohl WR (1990) Appl. Environ. Microbiol. 56: 1004Google Scholar
  109. 109.
    Lutkenhaus J (1990) Trends Genet 6: 22CrossRefGoogle Scholar
  110. 110.
    Riesenberg D (1991) Curr. Opin. Biotechnol. 2: 380Google Scholar
  111. 111.
    Kang BC, Lee SY, Chang HN (1993) Biotechnol Bioeng. 42: 1107CrossRefGoogle Scholar
  112. 112.
    Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell: A molecular approach. Sinauer Associates Sunderland, MAGoogle Scholar
  113. 113.
    Zhang H, Obias V, Gonyer K, Dennis D (1994) Appl. Environ. Microbiol. 60: 1198Google Scholar
  114. 114.
    Busse HJ, Kalousek S, Lubitz W (1992) Abstracts of Internatinal Symposium on Bacterial Polyhydroxyalkanoates '92, Göttinger, p 273Google Scholar
  115. 115.
    Liebergesell M, Hustede E, Timm A, Steinbüchel A, Fuller RC, Lenz RW Schlegel HG (1991) Arch. Microbiol. 155: 415CrossRefGoogle Scholar
  116. 116.
    Garcia Lillo JA, Rodriguez-Valera F (1990) Appl. Environ. Microbiol. 56: 2517Google Scholar
  117. 117.
    Rodriguez-Valera F, Garcia Lillo JA (1990) Halobacteria as producers of poly-β-hydroxyalkanoats. In: Novel Biodegradable Microbial Polymers (ed. Dawes EA), p. 425, Kulwer Academic Publishers, Dordrecht.Google Scholar
  118. 118.
    Steinbüchel A, Debzi EM, Marchessault RH, Timm A (1993) Appl. Microbiol. Biotechnol. 39: 443CrossRefGoogle Scholar
  119. 119.
    Pries A, Steinbüchel A, Schlegel HG (1990) Appl. Microbiol. Biotechnol. 33: 410CrossRefGoogle Scholar
  120. 120.
    Fries K, Lafferty RM (1989) J. Biotechnol. 10: 285CrossRefGoogle Scholar
  121. 121.
    Timm A, Byrom D, Steinbüchel A (1990) Appl. Microbiol. Biotechnol. 33: 296CrossRefGoogle Scholar
  122. 122.
    Preusting H, Kingma, J, Huismann G, Steinbüchel A, Witholt B (1993) J. Environ. Polym. Degrad. 1: 11CrossRefGoogle Scholar
  123. 123.
    Hustede E, Steinbüchel A, Schlegel HG (1992) FEMS Microbiol. Lett. 93: 285CrossRefGoogle Scholar
  124. 124.
    Huisman GW, Wonink E, De Koning G, Preusting H, Witholt B (1992) Appl. Microbiol. Biotechnol. 38: 1CrossRefGoogle Scholar
  125. 125.
    Liebergesell M, Mayer F, Steinbüchel A (1993) Appl. Microbiol. Biotechnol. 40: 292CrossRefGoogle Scholar
  126. 126.
    Ramsay B, Lomaliza K, Chavaric C, Dube B, Bataille P, Ramsay J (1990) Appl. Envron. Microbiol. 56: 2093Google Scholar
  127. 127.
    Lee SY, Lee KM, Chang HN, Steinbüchel A (1994) Biotechnol. Bioeng. 44: 1337CrossRefGoogle Scholar
  128. 128.
    Lee SY (1994) Biotechnol. Lett. 16: 1247Google Scholar
  129. 129.
    Lee SY, Lee YK, Chang HN (1995) J. Ferment. Bioeng. in pressGoogle Scholar
  130. 130.
    Hahn SK, Chang YK, Lee SY (1995) Appl. Environ. Microbiol. in pressGoogle Scholar
  131. 131.
    Slater S, Gallaher T, Dennis D (1992) Appl. Environ. Microbiol. 58: 1089Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Sang Yup Lee
    • 1
  • Ho Nam Chang
    • 1
  1. 1.Department of Chemical Engineering and BioProcess Engineering Research CenterKorea Advances Institute of Science and TechnologyTaejonKorea

Personalised recommendations