Sur les temps de coupure des marches aléatoires réfléchies

  • Sandrine Lagaize
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1686)

Abstract

The paths of bilateral reflected simple random walks in dimension d≥5 have a.s. infinitely many cut times.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. [1]
    Burdzy, K., (1989). Cut points on Brownian paths. Ann. Proba. 17, 1012–1036.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Dvoretsky, A., Erdös, P., Kakutani, S., (1950). Double points of paths of Brownian motions in n-space. Acta. Sci. Math. Szeged. 12, 75–81.MathSciNetMATHGoogle Scholar
  3. [3]
    Lawler, G., (1991). Intersections of Random Walks. Birkhäuser, Boston.CrossRefMATHGoogle Scholar
  4. [4]
    Lawler, G., (1996). Hausdorff dimension of cut points for Brownian motion. Electronical Journal of Probability 1, paper no 2.Google Scholar
  5. [5]
    Lawler, G., (1996). Cut times for simple random walk. Electronical Journal of Probability 1, paper no 13.Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Sandrine Lagaize
    • 1
  1. 1.UMR 6628-MAPMOUniversité d'Orléans et CNRSOrléans Cedex 2France

Personalised recommendations