Holonorphic embedding of compact s.p.c. manifolds into complex manifolds as real hypersurfaces

  • Takeo Ohsawa
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1090)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Boutet de Monvel, L., Intégration des équations de Cauchy-Riemann induites formelles, Séminaire Goulaouic-Lions-Schwartz 1974–75.Google Scholar
  2. [2]
    Grauert, H., On Levi’s problem and the imbedding of real analytic manifolds, Ann. of Math. 68, 460–472 (1958).MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Grauert, H. and Riemenschneider, O., Kählersche Mannigfaltigkeiten mit hyper-q-konvexem Rand, Problems in Analysis, N.J., Princeton Univ. Press 1970. 61–79.Google Scholar
  4. [4]
    Hironaka., H. Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, Ann. of Math. 79 (1964) 109–326.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    Hironaka, H., and Rossi, H., On the equivalence of imbeddings of exceptional complex spaces, Math. Ann. 156 (1964) 313–333.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    Hörmander, L., L2 estimates and existence theorems for the \(\bar \partial\) operator, Acta Math. 113 (1965), 89–152.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Hörmander, L., An introduction to complex analysis in several variables, Van Nostrand, Princeton, N.J., 1966.MATHGoogle Scholar
  8. [8]
    Kohn, J., Harmonic integrals on strongly pseudo-convex manifolds, I, Ann. of Math. 78 (1963) 112–148.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    Kohn, J. and Rossi, H. On the extension of holomorphic functions from the boundary of a complex manifold, Ann. Math. 81 (1965) 451–472.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    Kuranishi, M., Strongly pseudoconvex CR structures over small balls Part III. An embedding theorem, Ann. of Math. 116 (1982) 249–330.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    Kuranishi, M., Application of \(\bar \partial _b\) to deformation of isolated singularities, Proc. of Symp. in Pure Math. 30, AMS, 1977, 97–106.MathSciNetCrossRefGoogle Scholar
  12. [12]
    Narasimhan, R., The Levi problem for complex spaces II, Math. Ann. 146 (1962) 195–216.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    Nakano, S. and Ohsawa, T., Strongly pseudoconvex manifolds and strongly pseudoconvex domains, to appear in Publ. RIMS, Kyoto Univ.Google Scholar
  14. [14]
    Tanaka, N., A differential geometric study on strongly pseudoconvex manifolds, Lectures in mathematics, Kyoto Univ. 9. 1975.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Takeo Ohsawa
    • 1
  1. 1.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan

Personalised recommendations