OCB: A generic benchmark to evaluate the performances of object-oriented database systems

  • JérÔme Darmont
  • Bertrand Petit
  • Michel Schneider
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1377)


We present in this paper a generic object-oriented benchmark (the Object Clustering Benchmark) that has been designed to evaluate the performances of clustering policies in object-oriented databases. OCB is generic because its sample database may be customized to fit the databases introduced by the main existing benchmarks (e.g., OO1). OCB's current form is clustering-oriented because of its clustering-oriented workload, but it can be easily adapted to other purposes. Lastly, OCB's code is compact and easily portable. OCB has been implemented in a real system (Texas, running on a Sun workstation), in order to test a specific clustering policy called DSTC. A few results concerning this test are presented.


object-oriented databases clustering performance evaluation benchmarking DSTC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.L. Anderson, A.J. Berre, M. Mallison, H.H. Porter III, B. Scheider: The Hyper-Model Benchmark. International Conference on Extending Database Technology, Venice, Italy, March 1990, pp. 317–331Google Scholar
  2. 2.
    A.J. Berre, T.L. Anderson: The HyperModel Benchmark for Evaluating Object-Oriented Databases. In “Object-Oriented Databases with Applications to CASE, Networks and VLSI CAD”, Edited by R. Gupta and E. Horowitz, Prentice Hall Series in Data and Knowledge Base Systems, 1991, pp. 75–91Google Scholar
  3. 3.
    F. Bullat, M. Schneider: Dynamic Clustering in Object Database Exploiting Effective Use of Relationships Between Objects. ECOOP'96, Linz, Austria, July 1996; Lecture Notes in Computer Science No. 1098, pp. 344–365Google Scholar
  4. 4.
    F. Bullat: Regroupement dynamique d'objets dans les bases de données. PhD Thesis, Blaise Pascal University, Clermont-Ferrand II, France, January 1996Google Scholar
  5. 5.
    M.J. Carey, D.J. Dewitt, J.F. Naughton: The OO7 Benchmark. Technical report, University of Wisconsin-Madison, January 1994Google Scholar
  6. 6.
    R.G.G. Cattell: An Engineering Database Benchmark. In “The Benchmark Handbook for Database Transaction Processing Systems”, Edited by Jim Gray, Morgan Kaufmann Publishers, 1991, pp. 247–281Google Scholar
  7. 7.
    S. Chabridon, J.-C. Liao, Y. Ma, L. Gruenwald: Clustering Techniques for Object-Oriented Database Systems. 38th IEEE Computer Society International Conference, San Francisco, February 1993, pp. 232–242Google Scholar
  8. 8.
    J. Darmont, A. Attoui, M. Gourgand: Simulation of clustering algorithms in OODBs in order to evaluate their performance. Simulation Practice and Theory, No. 5, 1997, pp. 269–287CrossRefGoogle Scholar
  9. 9.
    J. Kempe, W. Kowarschick, W. Kie\ling, R. Hitzelberger, F. Dutkowski: Benchmarking Object-Oriented Database Systems for CAD. 6th International Conference on Database and Expert Systems Applications (DEXA 95), London, UK, 1995; LNCS Vol. 978 (Springer), pp. 167–176Google Scholar
  10. 10.
    W.J. Mc Iver Jr., R. King: Self-Adaptive, On-Line Reclustering of Complex Object Data. ACM SIGMOD Conference, Minneapolis, Minnesota, 1994, pp. 407–418Google Scholar
  11. 11.
    V. Singhal, S.V. Kakkad, P.R. Wilson: Texas: An Efficient, Portable Persistent Store. 5th International Workshop on Persistent Object Systems, San Miniato, Italy, 1992Google Scholar
  12. 12.
    M.M. Tsangaris, J.F. Naughton: On the Performance of Object Clustering Techniques. ACM SIGMOD International Conference on Management of Data, San Diego, California, June 1992, pp. 144–153Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • JérÔme Darmont
    • 1
  • Bertrand Petit
    • 1
  • Michel Schneider
    • 1
  1. 1.Laboratoire dínformatique (LIMOS)Université Blaise Pascal - Clermont-Ferrand IIAubière CedexFrance

Personalised recommendations