Fusion queries over internet databases

  • Ramana Yerneni
  • Yannis Papakonstantinou
  • Serge Abiteboul
  • Hector Garcia-Molina
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1377)


Fusion queries search for information integrated from distributed, autonomous sources over the Internet. We investigate techniques for efficient processing of fusion queries. First, we focus on a very wide class of query plans that capture the spirit of many techniques usually considered in existing systems. We show how to efficiently find good query plans within this large class. We provide additional heuristics that, by considering plans outside our target class of plans, yield further performance improvements.


Query Processing Cost Model Query Optimization Union View Simple Plan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Arens, C. Chee, C. Hsu and C. Knoblock. Retrieving and Integrating Data from Multiple Information Sources. In Journal of Intelligent and Cooperative Information Systems, Vol. 2, June 1993.Google Scholar
  2. 2.
    J. Blakeley. Data Access for the Masses through OLE DB. In Proc. ACM SIGMOD Conf., 161–172, 1996.Google Scholar
  3. 3.
    S. Ceri, G. Gottlobb, and L. Tanca. Logic Programming and Databases, Surveys in Computer Science. Springer-Verlag, 1990.Google Scholar
  4. 4.
    S. Ceri and G. Pelagatti. Distributed Databases: Principles and Systems. McGraw-Hill, 1984.Google Scholar
  5. 5.
    W. Du, R. Krishnamurthy and M. Shan. Query Optimization in Heterogeneous DBMS. In Proc. VLDB Conference, 277–291, 1992.Google Scholar
  6. 6.
    O. Duschka and M. Genesereth. Query Planning in Infomaster. In Proc. ACM Symposium on Applied Computing, 1997.Google Scholar
  7. 7.
    P. Gassner, G. Lohman, B. Schiefer and Y. Wang. Query Optimization in the IBM DB2 Family. In IEEE Data Engineering Bulletin, 16:4–18, 1993.Google Scholar
  8. 8.
    G. Graefe. The Cascades Framework for Query Optimization. In Bulletin of the Technical Committee on Data Engineering, 18:19–29, September 1995.Google Scholar
  9. 9.
    P. Gupta and E. Lin. DataJoiner: A Practical Approach to Multidatabase Access. In Proc. PDIS Conference, 264–264, 1994.Google Scholar
  10. 10.
    L. Haas, D. Kossman, E. Wimmers, and J. Yang. Optimizing Queries across Diverse Data Sources. In Proc. VLDB Conference, 1997.Google Scholar
  11. 11.
    L. Haas, J. Freytag, G. Lohman, and H. Pirahesh. Extensible Query Processing in Starburst. In Proc. ACM SIGMOD Conference, 377–388, 1989.Google Scholar
  12. 12.
    A. Levy, A. Rajaraman and J. Ordille. Query Processing in the Information Manifold. In Proc. VLDB Conference, 1996.Google Scholar
  13. 13.
    W. Litwin, L. Mark and N. Roussopoulos. Interoperability of Multiple Autonomous Databases. In ACM Computing Surveys, 22:267–293, 1990.CrossRefGoogle Scholar
  14. 14.
    G. Lohman. Grammar-like Functional Rules for Representing Query Optimization Alternatives. In Proc. ACM SIGMOD Conference, 1988.Google Scholar
  15. 15.
    H. Lu, B. Ooi and C. Goh. Multidatabase Query Optimization: Issues and Solutions. In Proc. RIDE-IMS'93, 137–143, 1993.Google Scholar
  16. 16.
    T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice Hall, 1991.Google Scholar
  17. 17.
    Y. Papakonstantinou. Query Processing in Heterogeneous Information Sources. Technical report, Stanford University Thesis, 1996.Google Scholar
  18. 18.
    Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange across Heterogeneous Information Sources. In Proc. ICDE Conference, 251–260, 1995.Google Scholar
  19. 19.
    Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. Ullman. A Query Translation Scheme for the Rapid Implementation of Wrappers. In Proc. DOOD Conference, 161–186, 1995.Google Scholar
  20. 20.
    N. Roussopoulos and H. Kang. A Pipeline N-way Join Algorithm based on the 2-way Semijoin Program. In IEEE Transactions on Knowledge and Data Engineering, 3:486–495, December 1991.CrossRefGoogle Scholar
  21. 21.
    S. Sharma and H. Zeller. Personal Communication with Sunil Sharma and Hans Zeller, Tandem Computers Inc. June, 1997.Google Scholar
  22. 22.
    A. Silberschatz, H. Korth and S. Sudarshan. Database System Concepts. McGraw-Hill, 1997.Google Scholar
  23. 23.
    V. Subrahmanian et al. HERMES: A Heterogeneous Reasoning and Mediator System. Scholar
  24. 24.
    R. Yerneni, Y. Papakonstantinou, S. Abiteboul and H. Garcia-Molina. Fusion Queries over Internet Databases (Extended Version). Scholar
  25. 25.
    Q. Zhu and P. Larson. A Query Sampling Method for Estimating Local Cost Parameters in a Multidatabase System. In Proc. ICDE, 144–153, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Ramana Yerneni
    • 1
  • Yannis Papakonstantinou
    • 2
  • Serge Abiteboul
    • 3
  • Hector Garcia-Molina
    • 4
  1. 1.Stanford UniversityUSA
  2. 2.University of CaliforniaSan DiegoUSA
  3. 3.INRIAFrance
  4. 4.Stanford UniversityUSA

Personalised recommendations