A parallel implementation of the block preconditioned GCR method

  • C. Vuik
  • J. Frank
Workshop: High Performance Numerical Computation and Applications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1593)

Abstract

The parallel implementation of GCR is addressed, with particular focus on communication costs associated with orthogonalization processes. This consideration brings up questions concerning the use of Householder reflections with GCR. To precondition the GCR method a block Gauss-Jacobi method is used. Approximate solvers are used to obtain a solution of the diagonal blocks. Experiments on a cluster of HP workstations and on a Cray T3E are given.

Keywords

approximate subdomain solution parallel Krylov subspace methods orthogonalization methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Axelsson and G. Linskog. On the eigenvalue distribution of a class of preconditioning methods. Numerische Mathematik, 48:479–498, 1986.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Z. Bai, D. Hu, and L. Reichel. A Newton-basis GMRES implementation. IMA Journal of Numerical Analysis, 14:563–581, 1994.MathSciNetGoogle Scholar
  3. 3.
    E. Brakkee, A. Segal, and C. G. M. Kassels. A parallel domain decomposition algorithm for the incompressible Navier-Stokes equations. Simulation Practice and Theory, 3:185–205, 1995.CrossRefGoogle Scholar
  4. 4.
    E. Brakkee, C. Vuik, and P. Wesseling. Domain decomposition for the incompressible Navier-Stokes equations: Solving subdomain problems accurately and in-accurately. International Journal for Numerical Methods in Fluids, 26:1217–1237, 1998.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Erik Brakkee. Domain Decomposition for the Incompressible Navier-Stokes Equations. PhD thesis, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands, April 1996.Google Scholar
  6. 6.
    E. de Sturler and H. A. van der Vorst. Reducing the effect of global communication in GMRES(m) and CG on parallel distributed memory computers. Applied Numerical Mathematics, 18:441–459, 1995.CrossRefGoogle Scholar
  7. 7.
    Stanley C. Eisenstat, Howard C. Elman, and Martin H. Schultz. Variational iterative methods for nonsymmetric systems of linear equations. SIAM Journal on Numerical Analysis, 20(2):345–357, April 1983.CrossRefMathSciNetGoogle Scholar
  8. 8.
    J. Erhel. A parallel GMRES version for general sparse matrices. Electronic Transactions on Numerical Analysis (http://etna.mcs.kent.edu). 3:160–176, 1995.MathSciNetGoogle Scholar
  9. 9.
    J. Frank and C. Vuik. Parallel implementation of a multiblock method with approximate subdomain solution. App. Num. Math., 1998. to appear.Google Scholar
  10. 10.
    Ivar Gustafsson. A class of first order factorization methods. BIT, 18:142–156, 1978.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Walter Hoffman. Iterative algorithms for Gram-Schmidt orthogonalization. Computing, 41:335–348, 1989.CrossRefMathSciNetGoogle Scholar
  12. 12.
    J. van Kan. A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM Journal on Scientific and Statistical Computing, 7(3):870–891, 1986.CrossRefGoogle Scholar
  13. 13.
    G. Li. A block variant of the GMRES method on massively parallel processors. Parallel Computing 23, 23:1005–1019, 1997.CrossRefMathSciNetGoogle Scholar
  14. 14.
    J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Mathematics of Computation, 31:148–162, 1977.CrossRefMathSciNetGoogle Scholar
  15. 15.
    A. Segal, P. Wesseling, J. van Kan, C.W. Oosterlee, and K. Kassels. Invariant discretization of the incompressible Navier-Stokes equations in boundary-fitted coordinates. International Journal for Numerical Methods in Fluids, 15:411–426, 1992.CrossRefGoogle Scholar
  16. 16.
    R. B. Sidje. Alternatives for parallel Krylov subspace basis computation. Numerical Linear Algebra with Applications, 4(4):305–331, 1997.CrossRefMathSciNetGoogle Scholar
  17. 17.
    Henk A. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES methods. Numerical Linear Algebra with Applications, 1(4):369–386, 1994.CrossRefMathSciNetGoogle Scholar
  18. 18.
    Homer F. Walker. Implementation of the GMRES method using Householder transformations. SIAM Journal on Scientific and Statistical Computing, 9(1):152–163, 1988.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • C. Vuik
    • 1
  • J. Frank
    • 1
    • 2
  1. 1.Faculty of Information Technology and Systems, Department of Technical Mathematics and InformaticsDelft University of TechnologyDelftThe Netherlands
  2. 2.Center for Mathematics and Computer Science (CWI)AmsterdamThe Netherlands

Personalised recommendations