Using Web technologies and meta-computing to visualise a simplified simulation model of tumor growth in vitro

  • Georgios S. Stamatakos
  • Evangelia I. Zacharaki
  • Nikolaos A. Mouravliansky
  • Konstantinos K. Delibasis
  • Konstantina S. Nikita
  • Nikolaos K. Uzunoglu
  • Andy Marsh
Workshop: IEEE EMBS ITIS-ITAB'99
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1593)

Abstract

The aim of this paper is to demonstrate the impact that Web technologies and meta computing can have on the simulation of biological processes such as tumor growth. A client-server architecture allowing real time surface and volume rendering using a standard Web browser is proposed. A simplified three-dimensional cytokinetic simulation model of tumor growth in vitro is developed and results are obtained concerning the development of a small cell lung cancer (SCLC) tumor spheroid in cell culture. A Gaussian distribution of the cell cycle phase durations is considered. The behavior of the model is compared with both published data and laboratory experience. The application of Web technologies and meta computing leads to a spectacular three-dimensional visualisation of both the external and the internal structure of a growing tumor spheroid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. D. Boissonat, Shape Reconstruction from Planar Cross Sections, Computer Vision, Graphics and Image Processing 44 (1988) 1–29.CrossRefGoogle Scholar
  2. [2]
    C. J. Clem, J.P. Rigaud, Computer simulation modelling and visualization of 3D architecture of biological tissues. Simulation of the evolution of normal metaplastic and dysplastic states of the nasal epithelium. Acta Biotheor. 43 (4) (1995) 425–442.CrossRefGoogle Scholar
  3. [3]
    R. Demicheli, R. Foroni, A. Ingrosso, G. Pratesi, C. Soranzo, M. Tortoreto An exponential-Gompertzian description of LoVo cell tumor growth from in vivo and in vitro data. Cancer Res, 49(23) (1989) 6543–6.Google Scholar
  4. [4]
    W. Duechting, Krebs, ein instabiler Regelkreis. Versuch einer Systemanalyse, Kybernetik 5(2) (1968) 70–77.CrossRefGoogle Scholar
  5. [5]
    W. Duechting, Modelling and simulation of normal and malignant tissue, in: M.H. Hamza and S.G. Tzafestas eds., Advances in Measurement and Control, Vol. 3 (ACTA Press, Anaheim, 1979) 909–918.Google Scholar
  6. [6]
    W. Duechting and G. Dehl, Spatial growth of tumors. A simulation study, in: L. Fedina, B. Kanyar, B. Kocsis, M. Kollai eds., Adv. Physiol. Sci., Vol. 34 (Akademiai Kiado, Budapest, 1981) 123–131.Google Scholar
  7. [7]
    W. Duechting and T. Vogelsaenger, Aspects of modelling and simulating tumor growth and treatment. J. Cancer Res. Clin. Oncol 105 (1983) 1–12.CrossRefGoogle Scholar
  8. [8]
    W. Duechting, Computer models applied to cancer research, in: M. Thoma and A. Wyner eds, Lecture Notes in Control and Information Sciences, 121 (Springer-Verlag, Berlin, 1988) 397–411.Google Scholar
  9. [9]
    W. Duechting, Recent progress in 3-D computer simulation of tumor growth and treatment, Acta Applicandae Mathematicae 14 (1989), 155–166.CrossRefMathSciNetGoogle Scholar
  10. [10]
    W. Duechting, R. Lehring, G. Rademacher, W. Ulmer, Computer simulation of clinical irradiation schemes applied to in vitro tumor spheroids, Strahlenther. Onkol. 165 (1989) 873–878.Google Scholar
  11. [11]
    W. Duechting, Computer simulation in cancer research, in: D.P.F. Moeller, ed., Advanced Simulation in Biomedicine (Springer-Verlag, NY, 1990) 117–139.Google Scholar
  12. [12]
    W. Duechting, Tumor growth simulation, Comp. & Graph. 14 (1990) 505–508.CrossRefGoogle Scholar
  13. [13]
    W. Duechting, W. Ulmer, R. Lehring, T. Ginsberg, E. Dedeleit Computer simulation and modelling of tumor spheroid growth and their relevance for optimization of fractionated radiotherapy, Strahlenther. Onkol. 168 (1992), 354–360.Google Scholar
  14. [14]
    W. Duechting, W. Ulmer and T. Ginsberg, Modelling of tumor growth and irradiation, in: A.R. Hounsel, J.M. Wilkinson and P.C. Williams, eds, Proceedings of the Xith International Conference on the Use of Computers in Radiation Therapy (North Western Medical Physics Department, Christie Hospital, Manchester, UK, 1994) 20–21.Google Scholar
  15. [15]
    W. Duechting, T. Ginsberg, W. Ulmer, Modelling of radiogenic responses induced by fractionated irradiation in malignant and normal tissue, Srem Cells 13(suppl 1) (1995) 301–306.Google Scholar
  16. [16]
    W. Duechting, W. Ulmer and T. Ginsberg, Cancer: A challenge for control theory and computer modelling, European J. of Cancer, 32A (1996) 1283–1292.CrossRefGoogle Scholar
  17. [17]
    W. Duechting, W. Ulmer and T. Ginsberg, Computer models for optimizing radiation therapy, in: H.U. Lemke, K. Inamura, M.W. Vannier, A.G. Farman, eds, CAR'96, Computer Assisted Radiology (Elsevier, Amsterdam, 1996)Google Scholar
  18. [18]
    M.J. Durst, Additional reference to “Marching Cubes”, Computer Graphics 22(2) (1988) 72–73.Google Scholar
  19. [19]
    J.F. Fowler, Review of radiobiological models for improving cancer treatment, in: K. Baier and D. Baltas, eds, Modelling in Clinical Radiobiology, Freiburg Oncology Series, Monograph No. 2 (Albert-Ludwigs-University Freiburg, Germany, 1997)Google Scholar
  20. [20]
    T. Ginsberg, Modellierung und Simulation der Proliferationsregulation und Strahlentherapie normaler und maligner Gewebe (Fortschr.-Ber. VDI, Reihe 17, Nr 140, VDI Verlag, Duesseldorf, 1996).Google Scholar
  21. [21]
    Lemay L, Couch J and Murdock K, 3Dgraphics and VRML 2.0 (Sams.net Publishing, 1996)Google Scholar
  22. [22]
    W.C. Lin, S.Y. Chen and C.T. Chen, A new surface interpolation technique for reconstructing 3D objects from serial cross sections, Computer Vision, Graphics and Image Processing 48 (1989) 124–143.CrossRefGoogle Scholar
  23. [23]
    H. Lodish, D. Baltimore, A. Berk, S.L. Zipursky, P. Matsudaira, J. Darnell, Molecular Cell Biology (Scientific American Books, NY, 1995) 1247–1294.Google Scholar
  24. [24]
    W.E. Lorensen and H.E. Cline, Marching Cubes: High resolution 3D surface construction algorithm, Computer Graphics 21(3) (1987) 163–169.CrossRefGoogle Scholar
  25. [25]
    G.K. Matsopoulos, N. Mouravliansky, K.K. Delibasis and K.S. Nikita, A novel and efficient implementation of the Marching Cubes Algorithm, Computer & Graphics, accepted, October 1998.Google Scholar
  26. [26]
    H.I. Pass, J.B. Mitchell, D.H. Johnson, A.T. Turrisi, Lung Cancer, Principles and Practice (Lippincott-Raven, Philadelphia, New York, 1996).Google Scholar
  27. [27]
    B.A. Payne and A.W. Toga, Surface mapping brain function on 3D models, IEEE Computer Graphics and Applications 10(2) (1990) 33–41.CrossRefGoogle Scholar
  28. [28]
    G.S. Stamatakos, N.K. Uzunoglu, K. Delibasis, M. Makropoulou, N. Mouravliansky, A. Marsh, A simplified simulation model and virtual reality visualization of tumour growth in vitro, Future Generation Computer Systems 14 (1998) 79–89.CrossRefGoogle Scholar
  29. [29]
    T. Vogelsaenger, Modellbildung und Simulation von Regelungsmechanismen wachsender Blutgefaessstrukturen in normalen Geweben und malignen Tumoren, Ph.D. Thesis, Department of Electrical Engineering, University of Siegen, Germany, 1986.Google Scholar
  30. [30]
    J.D. Watson, N.H. Hopkins, J.W. Roberts, J.A. Steitz, A.M. Weiner, Molecular Biology of the Gene, 4th Edition (The Benjamin/Cummings Publishing Company, Inc., Menlo Park California, 1987) 1058–1096.Google Scholar
  31. [31]
    S.B. Xu and W.X. Lu, Surface Reconstruction of 3D Objects in computerized Tomography, Computer Vision, Graphics and Image Processing 44 (1988) 270–278.CrossRefGoogle Scholar
  32. [32]
    C. Zhou, R. Shu and M.S. Kankanhalli, Handling small features in isosurface generation using Marching Cubes, Comp. & Graphics 18(6) (1994) 845–848.CrossRefGoogle Scholar
  33. [33]
    B. Grant, “Virtual Reality gives medicine a powerful new tool”, Biophotonics International, November/December 1997, p. 40–45.Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Georgios S. Stamatakos
    • 1
  • Evangelia I. Zacharaki
    • 1
  • Nikolaos A. Mouravliansky
    • 1
  • Konstantinos K. Delibasis
    • 1
  • Konstantina S. Nikita
    • 1
  • Nikolaos K. Uzunoglu
    • 1
  • Andy Marsh
    • 1
  1. 1.Department of Electrical and Computer Engineering, Division of ElectroscienceNational Technical University of AthensAthensGreece

Personalised recommendations