Geoprove: Geometric probes for virtual environments

  • R. G. Belleman
  • J. A. Kaandorp
  • D. Dijkman
  • P. M. A. Sloot
Workshop: Virtual Reality
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1593)


We present a software architecture that can be used to instrument interactive virtual environments with virtual probes to obtain quantitative information from geometric presentations. This architecture provides tools by which measurements can be obtained from multiple levels of data presentations, ranging from graphically displayed geometry to the underlying raw data sets.


Virtual Environment Software Architecture Simulated Structure Stony Coral Immersive Virtual Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Academic Computing Services Amsterdam (SARA), Amsterdam, the Netherlands. SARA—CAVE Homepage, 1998. Scholar
  2. 2.
    R.G. Belleman, J.A. Kaandorp, and P.M.A. Sloot. A virtual environment for the exploration of diffusion and flow phenomena in complex geometries. Future Generation Computer Systems, 14(3–4):209–214, 1998.CrossRefGoogle Scholar
  3. 3.
    Rachael Brady, John Pixton, George Baxter, Patrick Moran, Clinton S. Potter, Bridget Carragher, and Andrew Belmont. Crumbs: a virtual environment tracking tool for biological imaging. In Murray Loew and Nahum Gurshon, editors, Proceedings of the IEEE Symposium on Frontiers in Biomedical Visualization, pages 18–25, Los Alamitos, CA, October 30 1995. IEEE Computer Society Press. // Scholar
  4. 4.
    Steve Bryson and Sandy Johan. Time management, simultaneity and time-critical computation in interactive unsteady visualization environments. In Proceedings of Visualization '96, page 255. IEEE Computer Science Press, Los Alamitos, CA, 1996.Google Scholar
  5. 5.
    C. Cruz-Neira, D.J. Sandin, and T.A. DeFanti. Surround-screen projection-based virtual reality: The design and implementation of the CAVE. In SIGGRAPH '93 Computer Graphics Conference, pages 135–142. ACM SIGGRAPH, August 1993.Google Scholar
  6. 6.
    Willem C. de Leeuw and Jarke J. van Wijk. A probe for local flow field visualization. In R.D. Bergeron G.M. Nielson, editor, IEEE Visualization '93, pages 39–45, Los Alamitos, CA, 1993. IEEE Computer Society Press.CrossRefGoogle Scholar
  7. 7.
    J. Feder. Fractals. Plenum Press, New York, London, 1988.zbMATHGoogle Scholar
  8. 8.
    J.A. Kaandorp. Analysis and synthesis of radiate accretive growth in three dimensions. J. Theor. Biol., 175:39–55, 1995.CrossRefGoogle Scholar
  9. 0.
    J.A. Kaandorp. Morphological analysis of growth forms of branching marine sessile organisms along environmental gradients. Mar. Biol., (in press).Google Scholar
  10. 10.
    J.A. Kaandorp, C. Lowe, D. Frenkel, and P.M.A. Sloot. The effect of nutrient diffusion and flow on coral morphology. Physical Review Letters, 77(11):2328–2331, 1996.CrossRefGoogle Scholar
  11. 11.
    B.B. Mandelbrot. The fractal geometry of nature. Freeman, San Francisco, 1983.Google Scholar
  12. 12.
    The Numerical Algorithms Group Ltd., Oxford, UK. Iris Explorer User's Guide, 1998. Scholar
  13. 13.
    B. Rinkevich and Y. Loya. Coral isomone: a proposed chemical signal controlling interclonal growth patterns in a branching coral. Bull. Mar. Sci., 36:319–324, 1985.Google Scholar
  14. 14.
    Will Schroeder, Ken Martin, and Bill Lorensen. The Visualization Toolkit, an object-oriented approach to 3D graphics (2nd edition). Prentice Hall, Upper Saddle River, NJ, 1997. ISBN 0-13-954694-4.Google Scholar
  15. 15.
    K.P. Sebens, J. Witting, and B. Helmuth. Effects of water flow and branch spacing on particle capture by the reef coral madracis mirabilis (duchassaing and michelotti). J. Exp. Mar. Biol. Ecol., 211:1–28, 1997.CrossRefGoogle Scholar
  16. 16.
    C. Upson, T. Faulhaber Jr., and D. Kamins et al. The Application Visualization System: a computational environment for scientific visualization. IEEE Computer Graphics and Applications, 9(4):30–42, July 1989.CrossRefGoogle Scholar
  17. 17.
    Virtual Reality Consulting (VRCO) Inc., Chicago, IL. CAVE User's Guide, 1998. Scholar
  18. 18.
    Haim J. Wolfson and Isidore Rigoutsos. Geometric hashing: An overview. IEEE Computational Science and Engineering, pages 10–21, October–December 1997.Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • R. G. Belleman
    • 1
  • J. A. Kaandorp
    • 1
  • D. Dijkman
    • 1
  • P. M. A. Sloot
    • 1
  1. 1.Parallel Scientific Computing and Simulation Group Faculty of Mathematics, Computer Science, Physics and AstronomyUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations