Advertisement

Image motion analysis using scale space approximation and simulated annealing

  • Vicenç Parisi Baradad
  • Hussein Yahia
  • Jordi Font
  • Isabelle Herlin
  • Emili Garcia-Ladona
Engeneering Applications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1607)

Abstract

This paper addresses the problem of motion estimation in sequences of remotely sensed images of the sea. When the temporal sampling period is low the estimation of the velocity field can be done by finding the correspondence between structures detected in the images. The scale space aproximation of these structures using the wavelet multiressolution is presented. The correspondence is solved using a simulated annealing technique which assures the convergence to high quality solutions.

Keywords

Simulated Annealing Multiresolution Analysis High Quality Solution Hopfield Neural Network Correspondence Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts, E., Korst, J.: Simulated annealing and Boltzmann machines: a stochastic approach to combinatorial optimization and neural computing. John Wiley & Sons (1989)Google Scholar
  2. 2.
    Aarts, E., Van Laarhoven, P.: A new polynomial time cooling schedule. Proc. IEEE Int. Conf. on Computer Aided Design. Santa Clara (1985) 206–208.Google Scholar
  3. 3.
    Côte, S., Tatnall, A.R.L.: Estimation of ocean surface currents from satellite imagery using a Hopfield neural network. Third Thematic Conference on Remote Sensing for Marine and Coastal Environments I Seattle (1995) 538–548.Google Scholar
  4. 4.
    Emery, W.J.: An objective method for computing advective surface velocities from sequential infrared satellite images. Journal of Geophysical Research, 91, (1986) 12865–12878CrossRefGoogle Scholar
  5. 5.
    Herlin, I.L., Cohen, I., Bouzidi S.: Image processing for sequences of oceanographic images. J. Visualization and Computer Animation 7 (1996) 169–176CrossRefGoogle Scholar
  6. 6.
    Hopfield, J.J., Tank, D.W.: Neural computation of decisions in optimization problems. Biologycal Cybernetics 7 (1985) 141–152MathSciNetGoogle Scholar
  7. 7.
    Ikeda, M.: Mesoscale variability revealed with sea surface temperature imaged by AVHRR on NOAA satellites. Oceanographic applications of remote sensing. CRC Press. (1995) 3–14Google Scholar
  8. 8.
    Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. on PAMI 11 (1989) 674–693zbMATHGoogle Scholar
  9. 9.
    Parisi V., et al.: A Hopfield neural network to track drifting buyos in the ocean. Proc. of the Ocean's 98 Conference II (1998) 1010–1018Google Scholar
  10. 10.
    Waku, J., and Chassery, J.M.: Wavelets and multi-Scale representation of discrete boundary. Proceedings of 11th. ICPR. The Hague (1992) 680–683.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Vicenç Parisi Baradad
    • 1
  • Hussein Yahia
    • 2
  • Jordi Font
    • 3
  • Isabelle Herlin
    • 2
  • Emili Garcia-Ladona
    • 3
  1. 1.AHA, Dept. Enginyeria ElectrònicaUPCTerrassaSpain
  2. 2.INRIA RocquencourtLe Chesnay CedexFrance
  3. 3.Dept. Geologia Marina i Oceanografia FísicaInstitut de Ciències del Mar, CSICBarcelonaSpain

Personalised recommendations