EEG-based brain-computer interface using subject-specific spatial filters

  • G. Pfurtscheller
  • C. Guger
  • H. Ramoser
Bio-inspired Systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1607)


Sensorimotor EEG rhythms are affected by motor imagery and can, therefore, be used as input signals for an EEG-based brain-computer interface (BCI). Satisfactory classification rates of imagery-related EEG patterns can be activated when multiple EEG recordings and the method of common spatial patterns is used for parameter estimation. Data from 3 BCI experiments with and without feedback are reported.

Key words

Brain-Computer Interface (BCI) single-trial EEG classification common spatial filter motor imagery event-related desynchronization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fukunaga, K.: Introduction to statistical pattern recognition, Academic Press, (1972)Google Scholar
  2. 2.
    Guger, C., Schloegl, A., Walterspacher, D., Pfurtscheller, G.: Design of an EEG-based Brain-Computer Interface (BCI) from standard components running in real-time under Windows. Biomed. Technik, (1999) in press.Google Scholar
  3. 3.
    Koles, Z.J.: The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG. Electroenceph. Clin. Neurophysiol. 79 (1991) 440–447.CrossRefGoogle Scholar
  4. 4.
    Maynard, E.M., Nordhausen, C.T., Normann, R.A.: The Utah intracortical electrode array: a recording structure for potential brain-computer interfaces. Electroenceph. Clin. Neurophysiol. 102 (1997) 228–239.CrossRefGoogle Scholar
  5. 5.
    McFarland, D.J., McCane, L.M., Wolpaw, J.R.: EEG-Based communication and control: short-term role of feedback. IEEE Trans. Rehab. Engng., 6 (1998) 7–11.CrossRefGoogle Scholar
  6. 6.
    Müller-Gerking, J., Pfurtscheller, G., Flyvbjerg, H.: Designing optimal spatial fitlers for single-trial EEG classification in a movement task. Electroenceph. clin. Neurophysiol. (1999) in press.Google Scholar
  7. 7.
    Neuper, C., Schlögl, A., Pfurtscheller, G.: Enhancement of left-right sensorimotor EEG differences during feedback-regulated motor imagery. J. Clin. Neurophysiol. (1999) in press.Google Scholar
  8. 8.
    Pfurtscheller, G., Neuper, C.: Motor imagery activates primary sensorimotor area in humans. Neuroscience Letters, 239 (1997) 65–68.CrossRefGoogle Scholar
  9. 9.
    Pfurtscheller, G., Neuper, C., Berger, J.: Source localization using event-related desynchronization (ERD) within the alpha band. Brain Topography. 6/4 (1994) 269–275.CrossRefGoogle Scholar
  10. 10.
    Pfurtscheller, G., Neuper, Ch., Flotzinger, D., Pregenzer, M.: EEG-based discrimination between imagination of right and left hand movement. Electroenceph. clin. Neurophysiol. 103 (1997) 642–651.CrossRefGoogle Scholar
  11. 11.
    Ramoser, H., Müller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of single-trial EEG during imagined hand movements, IEEE Rehab. Engng. (1999) submittedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • G. Pfurtscheller
    • 1
  • C. Guger
    • 1
  • H. Ramoser
    • 1
  1. 1.Department of Medical Informatics, Institute of Biomedical Engng. and Ludwig Boltzmann Institute of Medical Informatics and NeuroinformaticsUniversity of Technology, GrazGrazAustria

Personalised recommendations