Le spectre du Laplacien sur un graphe

  • Jean-Pierre Roth
Deuxieme Partie
Part of the Lecture Notes in Mathematics book series (LNM, volume 1096)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    R. BALIAN et C. BLOCH.-Eigenfrequency Density Oscillations. Annals of Physics, 69, (1972), p. 76–160.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    M. BERGER, P. GAUDUCHON et E. MAZET.-Le spectre d'une variété riemannienne. Springer Lecture Notes, 194, (1971).Google Scholar
  3. [3]
    J. CHAZARAIN.-Formule de Poisson pour les variétés riemanniennes. Inventiones Mathematicae, 24, (1974), p. 65–82.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    Y. COLIN DE VERDIERE.-Spectre du laplacien et longueurs des géodésiques périodiques. Compositio Mathematica, 27, (1973), p. 83–106 et 159–184.MathSciNetMATHGoogle Scholar
  5. [5]
    J.J. DUISTERMAAT and V.W. GUILLEMIN.-The spectrum of positive elliptic operators and periodic bicharacteristics. Inventiones Mathematicae, 29, (1975), p. 39–79.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    D.A. HEJHAL.-The Selberg trace formula for PSL (2,ℝ). Springer Lecture Notes, 548, (1976).Google Scholar
  7. [7]
    J.P. ROTH.-Spectre du laplacien sur un graphe. C.R. Acad. Sc. Paris, t. 296, (1983), p. 783–795.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Jean-Pierre Roth
    • 1
  1. 1.I. S. E. A.Mulhouse Cedex

Personalised recommendations