Minimal rational threefolds

  • Shigeru Mukai
  • Hiroshi Umemura
Curves, Surfaces, Threefolds, …
Part of the Lecture Notes in Mathematics book series (LNM, volume 1016)


Line Bundle Cross Ratio Hyperplane Section Canonical Bundle High Weight Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B]
    Borel, A.: Linear algebraic groups, Benjamin, New York, 1969.zbMATHGoogle Scholar
  2. [C]
    Clebsch. A.: Theorie der binären algebraischen Formen, Teubner, Leipzig, 1872.zbMATHGoogle Scholar
  3. [D]
    Demazure, M.: Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. Ec. Norm. Sup., 4e série, t.3 (1970), 507–588.MathSciNetzbMATHGoogle Scholar
  4. [Ei]
    Eisenbud, D.: Introduction to algebras with straightening laws, Ring theory and algebra III, Lecture notes in pure and appl. math., Marcel Dekker, New York and Basel, 1979.Google Scholar
  5. [EF]
    Enriques, F. e Fano, G.: Sui gruppi di trasformazioni cremoniane dello spazio, Annali di Matematica pura ed applicata, s. 2a, to. 15 (1897), 59–98.CrossRefzbMATHGoogle Scholar
  6. [F]
    Fano, G.: I gruppi di Jonquières generalizzati, Atti della R. Acc. di Torino, 33 (1898), 221–271.zbMATHGoogle Scholar
  7. [G]
    Gordan, P.: Vorlesungen über Invariantentheorie, Teubner, Leipzig, 1887.zbMATHGoogle Scholar
  8. [Ha]
    Hartshorne, R.: Ample subvarieties of algebraic varieties, Lecture notes in Math. 156, Springer-Verlag, Berlin-Heidelberg-New York, 1976.zbMATHGoogle Scholar
  9. [Hi]
    Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero, Annals of Math. 79 (1964), 109–326.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [Hu]
    Humphreys, J.E.: Introduction to Lie algebra and representation theory, GTM 9, Springer-Verlag, Berlin-Heidelberg-New York, 1972.CrossRefGoogle Scholar
  11. [Il]
    Iskovskih, V.A.: Fano threefolds I, Math. USSR Izv. 11 (1977), 485–527.MathSciNetCrossRefGoogle Scholar
  12. [12]
    Iskovskih, V.A.: Fano threefolds II, Math. USSR Izv. 12 (1978), 469–506.MathSciNetCrossRefGoogle Scholar
  13. [13]
    Iskovskih, V.A.: Birational automorphisms of three-dimensional algebraic varieties, J. Sov. Math., 13 (1980), 815–868.CrossRefGoogle Scholar
  14. [IM]
    Iskovskih, V.A. and Manin, Ju.I.: Three-dimensional quartics and counterexamples to the Lüroth problem, Math. USSR Sbornik 15 (1971), 141–166.CrossRefGoogle Scholar
  15. [K]
    Kempf, G., Knudsen, F., Mumford, D. and Saint-Donat, B.: Toroidal embeddings I, Lecture notes in Math. 339, Springer-Verlag, Berlin-Heidelberg-New York, 1972.zbMATHGoogle Scholar
  16. [Mo]
    Mori, S.: Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116 (1982), 133–176.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [Mu]
    Mumford, D.: Algebraic geometry I, Complex projective varieties, Grund. math. Wissen. 221, Springer-Verlag, Berlin-Heidelberg-New York, 1976.zbMATHGoogle Scholar
  18. [Re]
    Reid, M.: Canonical 3-folds, Journée de géométrie algébrique d’Angers, ed. A. Beauville, Sijthoff and Noordhoff, Alphen 1980, 273–310.Google Scholar
  19. [R]
    Rosenlicht, M.: Some basic theorems on algebraic groups, Amer. J. of Math., 78 (1956), 401–443.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [S1]
    Serre, J.-P.: Algèbre de Lie semi-simples complexes, Benjamin, New York, 1966.zbMATHGoogle Scholar
  21. [S2]
    Serre, J.-P.: Représentations linéaires des groupes finis, Hermann, Paris, 1967.zbMATHGoogle Scholar
  22. [Ul]
    Umemura, H.: Sur les sous-groupes algébriques primitifs de groupe de Cremona à trois variables, Nagoya Math. J. 79 (1980), 47–67.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [U2]
    Umemura, H.: Maximal algebraic subgroups of the Cremona group of three variables, Nagoya Math. J. 87 (1982), 59–78.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [U3]
    Umemura, H.: Maximal connected algebraic subgroup of the Cremona group II, manuscript.Google Scholar
  25. [W]
    Weber, H.: Lehrbuch der Algebra II, Chelsea, New York.Google Scholar
  26. [Z]
    Zariski, O.: Introduction to the problem of minimal models in the theory of algebraic surfaces, Math. Soc. of Japan, Tokyo, 1958.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Shigeru Mukai
    • 1
  • Hiroshi Umemura
    • 1
  1. 1.Department of MathematicsNagoya UniversityNagoyaJapan

Personalised recommendations