The uniruledness of the moduli space of curves of genus 11

  • Shigefumi Mori
  • Shigeru Mukai
Curves, Surfaces, Threefolds, …
Part of the Lecture Notes in Mathematics book series (LNM, volume 1016)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AS]
    E. Arbarello and E. Sernesi, The equation of a plane curve, Duke Math. J. 46(1979), 469–485.MathSciNetCrossRefMATHGoogle Scholar
  2. [C]
    C. H. Clemens, Double solids, to appear.Google Scholar
  3. [DM]
    P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Publ. I.H.E.S. 36, 75(1969).Google Scholar
  4. [D]
    R. Donagi, The unirationality of A5, to appear.Google Scholar
  5. [F]
    A. Fujiki, Coarse moduli space for polarized compact Kaehler manifolds and polarized algebraic manifolds, to appear.Google Scholar
  6. [GH]
    P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, 1978.Google Scholar
  7. [GP]
    L. Gruson and C. Peskin, Genre des courbes algebrique de l’espace projectif, Ann. Sci. E.N.S., Paris, to appearGoogle Scholar
  8. [HM]
    J. Harris and D. Mumford, on the Kodaira dimension of the moduli space of curves, 67(1982), 23–86.MathSciNetGoogle Scholar
  9. [K]
    K. Kodaira, On the structure of compact complex analytic surfaces, I, Amer. J. Math., 86(1964), 751–798.MathSciNetCrossRefMATHGoogle Scholar
  10. [I]
    J. Igusa, Arithmetic varieties of moduli of genus two, Ann. Math., 72(1960), 612–649.MathSciNetCrossRefMATHGoogle Scholar
  11. [M]
    D. Mumford, On the Kodaira dimension of the Siegel modular variety, to appear.Google Scholar
  12. [MF]
    D. Mumford and J. Fogarty, Geometric Invariant Theory, Springer-Verlag-Berlin, Heidelberg New York, 1982.CrossRefMATHGoogle Scholar
  13. [PS]
    I. Pjatetskii-Shapiro and I. Shafarevich, A Torelli theorem for algebraic surfaces of type K3, Math. USSR Izv. 5, 547(1971).CrossRefMATHGoogle Scholar
  14. [SD]
    B. Saint-Donat, Projective models of K-3 surfaces, Amer. J. Math., 96(1974), 602–639.MathSciNetCrossRefMATHGoogle Scholar
  15. [S]
    E. Sernesi, L’unirazionalita della varieta dei moduli delle curve di genere dodici, Ann. Sc. Norm. Sup. Pisa, 8(1981), 405–439.MathSciNetMATHGoogle Scholar
  16. [SI]
    T. Shioda and H. Inose, On singular K3 surfaces, Complex analysis and algebraic geometry, Iwanami Shoten, Cambridge University Press, 1977, 119–136.Google Scholar
  17. [W]
    W. Wirtinger, Untersuchungen ueber Thetafuctionen, Teubner, Berlin, 1895.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Shigefumi Mori
    • 1
  • Shigeru Mukai
    • 1
  1. 1.Department of MathematicsNagoya UniversityNagoyaJapan

Personalised recommendations