Topology pp 230-245 | Cite as

Verma modules over the virasoro algebra

  • B. L. Feigin
  • D. B. Fuchs
Applications Of Topology
Part of the Lecture Notes in Mathematics book series (LNM, volume 1060)


Integral Point Singular Vector Verma Module Maximal Submodule Proper Submodule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Feigin B.L., Half-infinite cohomology of the Lie algebras of Kac-Moody and Virasero, Uspekhi Mat.Nauk, 1983.Google Scholar
  2. 2.
    Feigin B.L., Fuchs D.B., The homology of the Lie algebra of vector fields on the line, Funct.Anal.and Appl., 1980, 14, N 3, 45–60.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Feigin B.L., Fuchs D.B., Skew-symmetric invariant differential operators on the line, and Verma modules over the Virasoro algebra, Funct.Anal.and Appl., 1982, 16, N 2, 47–63.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gelfand I.M., Fuchs D.B., The cohomology of the Lie algebra of vector fields on the circle, Fucnt.Anal. and Appl., 1968, 2, N 4, 92–93.Google Scholar
  5. 5.
    Gelfand I.M., Feigin B.L., Fuchs D.B., The cohomology of intinite Lie algebras and the Laplace operators, Fucnt.Anal.and Appl., 1978, 12, N 4, 1–5.Google Scholar
  6. 6.
    Goncharova L.V., The cohomology of Lie algebras of formal vector fields on the line, Funct.Anal.and Appl., 1973, 7, N 2, 6–14MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kac V.G., Contravariant form for infinite-dimensional Lie algebras and superalgebras, Lect. Notes in Phys., 1979, 94, 441–445.CrossRefzbMATHGoogle Scholar
  8. 8.
    Kac V.G., Some problems on infinite dimensional Lie algebras and their representations, Preprint, MIT, 1981.Google Scholar
  9. 9.
    Lutsjuk A.V., Homomorphisms of the modules Mx, Funct.Anal. and Appl., 1974, 8, N 4, 91–92.Google Scholar
  10. 10.
    Mandelstam S., Dual-resonance theory, Physics Reps, 1974, 13, 259–35.CrossRefGoogle Scholar
  11. 11.
    Retach V.S., Feigin B.L., On the cohomology of some algebras and superalgebras of vector field, Uspekhi Mat.Nauk, 1982, 37, N 2, 233–234.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • B. L. Feigin
    • 1
  • D. B. Fuchs
    • 1
  1. 1.Moscow State UniversityMoscowUSSR

Personalised recommendations