The properties of a residual set of vector measures

  • R. Anantharaman
  • K. M. Garg
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1033)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. ANANTHARAMAN: Extremal Structure of the Closed Convex Hull of the Range of a Measure. Proc. Symp. on Vector and Operator valued measures and applications (Snowbird, Utah), Academic Press (New York), 1973, 7–22. MR48, #11436.Google Scholar
  2. [2]
    R. ANANTHARAMAN and K. M. GARG: Some Topological Properties of a Vector Measure and its Integral Map. Jour. Austral. Math. Soc. A 23(4), (1977), 453–466. MR58, #6144.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    R. ANANTHARAMAN and K. M. GARG: On the range of a Vector Measure. Bull. Ser. Math. R. S. Roumanie (N.S.) 22(70)(2), (1978), 115–132. MR58, #28404.MathSciNetMATHGoogle Scholar
  4. [4]
    E. BOLKER: A Class of Convex Bodies. Trans. Amer. Math. Soc. 143, (1969), 323–345. MR41, #921.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    A. M. BRUCKNER and K. M. GARG: The Level Structure of a Residual Set of Continuous Functions. Trans. Amer. Math. Soc. 232, (1977), 307–321. MR 57, #16487.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    J. DIESTEL: Geometry of Banach Spaces: Selected Topics. Lecture Notes in Mathematics, 485, Springer-Verlag (New York) 1975.CrossRefMATHGoogle Scholar
  7. [7]
    J. DIESTEL and J. J. UHL, Jr.: Vector Measures. AMS Surveys no. 15, (1977). MR56, #12216.Google Scholar
  8. [8]
    N. DUNFORD and J. T. SCHWARTZ: Linear Operators, Part I. Inter Science (New York) (1958). MR22, #8302.Google Scholar
  9. [9]
    K. M. GARG: On a Residual Set of Continuous Functions. Czechoslovak Math. Jour. 20(95), (1970), 537–543. MR42, #3233.MathSciNetMATHGoogle Scholar
  10. [10]
    P. R. HALMOS: The Range of a Vector Measure. Bull. Amer. Math. Soc. 53, (1947), 138–141. MR9, #574.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    T. HUSAIN and I. TWEDDLE: On the Extreme Points of the Sum of two Compact Convex sets. Math. Ann. 188, (1970), 113–122.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    N. JANICKA and N. J. KALTON: Vector Measures of Infinite Variation. Bull. Acad. Polon. Sci. Serie Math. Astron. et Physics 25, (1977), 232–234. MR56, #3235.MathSciNetMATHGoogle Scholar
  13. [13]
    V. L. KLEE: Some New Results on Smoothness and Rotundity in Normed Linear Spaces. Math. Ann. 139, (1959), 51–63.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    I. KLUVANEK and G. KNOWLES: Vector Measures and Control Systems. North-Holland/American Elsevier (Amsterdam/New York), 1975.MATHGoogle Scholar
  15. [15]
    J. LEW: The Range of a Vector Measure with Values in a Montel Space. Math. Systems Theory 5, (1971), 145–147. MR46, #1999.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    J. LINDENSTRAUSS and L. TZAFRIRI: Classical Banach Spaces I. Springer-Verlag (New York), 1977. MR58, #17766.CrossRefMATHGoogle Scholar
  17. [17]
    N. RICKERT: Measures whose Range is a Ball. Pacific Jour. Math. 23, (1967), 361–367. MR36, #5296.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    E. THOMAS: The Lebesgue-Nikodým Theorem for Vector Valued Measures. Mem. Amer. Math. Soc. no. 139, (1974).Google Scholar
  19. [19]
    B. WALSH: Mutual Absolute Continuity of Sets of Measures. Proc. Amer. Math. Soc. 29, (1971), 506–510. MR43, #4998.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    W. WNUK: The Converse of Lyapunov Convexity Theorem. Prace Matem 21, (1980), 389–390. MR81i, #28013.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • R. Anantharaman
    • 1
  • K. M. Garg
    • 2
  1. 1.Mathematics ProgramS.U.N.Y CollegeOld WestburyU.S.A.
  2. 2.Department of MathematicsUniversity of AlbertaEdmontonCanada

Personalised recommendations