The properties of a residual set of vector measures

  • R. Anantharaman
  • K. M. Garg
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1033)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. ANANTHARAMAN: Extremal Structure of the Closed Convex Hull of the Range of a Measure. Proc. Symp. on Vector and Operator valued measures and applications (Snowbird, Utah), Academic Press (New York), 1973, 7–22. MR48, #11436.Google Scholar
  2. [2]
    R. ANANTHARAMAN and K. M. GARG: Some Topological Properties of a Vector Measure and its Integral Map. Jour. Austral. Math. Soc. A 23(4), (1977), 453–466. MR58, #6144.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    R. ANANTHARAMAN and K. M. GARG: On the range of a Vector Measure. Bull. Ser. Math. R. S. Roumanie (N.S.) 22(70)(2), (1978), 115–132. MR58, #28404.MathSciNetMATHGoogle Scholar
  4. [4]
    E. BOLKER: A Class of Convex Bodies. Trans. Amer. Math. Soc. 143, (1969), 323–345. MR41, #921.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    A. M. BRUCKNER and K. M. GARG: The Level Structure of a Residual Set of Continuous Functions. Trans. Amer. Math. Soc. 232, (1977), 307–321. MR 57, #16487.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    J. DIESTEL: Geometry of Banach Spaces: Selected Topics. Lecture Notes in Mathematics, 485, Springer-Verlag (New York) 1975.CrossRefMATHGoogle Scholar
  7. [7]
    J. DIESTEL and J. J. UHL, Jr.: Vector Measures. AMS Surveys no. 15, (1977). MR56, #12216.Google Scholar
  8. [8]
    N. DUNFORD and J. T. SCHWARTZ: Linear Operators, Part I. Inter Science (New York) (1958). MR22, #8302.Google Scholar
  9. [9]
    K. M. GARG: On a Residual Set of Continuous Functions. Czechoslovak Math. Jour. 20(95), (1970), 537–543. MR42, #3233.MathSciNetMATHGoogle Scholar
  10. [10]
    P. R. HALMOS: The Range of a Vector Measure. Bull. Amer. Math. Soc. 53, (1947), 138–141. MR9, #574.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    T. HUSAIN and I. TWEDDLE: On the Extreme Points of the Sum of two Compact Convex sets. Math. Ann. 188, (1970), 113–122.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    N. JANICKA and N. J. KALTON: Vector Measures of Infinite Variation. Bull. Acad. Polon. Sci. Serie Math. Astron. et Physics 25, (1977), 232–234. MR56, #3235.MathSciNetMATHGoogle Scholar
  13. [13]
    V. L. KLEE: Some New Results on Smoothness and Rotundity in Normed Linear Spaces. Math. Ann. 139, (1959), 51–63.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    I. KLUVANEK and G. KNOWLES: Vector Measures and Control Systems. North-Holland/American Elsevier (Amsterdam/New York), 1975.MATHGoogle Scholar
  15. [15]
    J. LEW: The Range of a Vector Measure with Values in a Montel Space. Math. Systems Theory 5, (1971), 145–147. MR46, #1999.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    J. LINDENSTRAUSS and L. TZAFRIRI: Classical Banach Spaces I. Springer-Verlag (New York), 1977. MR58, #17766.CrossRefMATHGoogle Scholar
  17. [17]
    N. RICKERT: Measures whose Range is a Ball. Pacific Jour. Math. 23, (1967), 361–367. MR36, #5296.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    E. THOMAS: The Lebesgue-Nikodým Theorem for Vector Valued Measures. Mem. Amer. Math. Soc. no. 139, (1974).Google Scholar
  19. [19]
    B. WALSH: Mutual Absolute Continuity of Sets of Measures. Proc. Amer. Math. Soc. 29, (1971), 506–510. MR43, #4998.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    W. WNUK: The Converse of Lyapunov Convexity Theorem. Prace Matem 21, (1980), 389–390. MR81i, #28013.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • R. Anantharaman
    • 1
  • K. M. Garg
    • 2
  1. 1.Mathematics ProgramS.U.N.Y CollegeOld WestburyU.S.A.
  2. 2.Department of MathematicsUniversity of AlbertaEdmontonCanada

Personalised recommendations