Advertisement

Classical and non-classical dynamics with constraints

  • A. M. Vershik
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1108)

Keywords

Vector Field Riemannian Manifold Tangent Bundle Linear Constraint Riemannian Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vershik A.M., Faddeev L.D. Differential geometry and Lagrangian mechanics with constraints.-Dokl. Akad. Nauk SSSR 202:3 (1972), 555–557 = Soviet Physics Doklady 17:1 (1972), 34–36.zbMATHGoogle Scholar
  2. 2.
    Vershik A.M., Faddeev L.D. Lagrangian mechanics in invariant form.-In: Problems of Theoretical Physics. vol.2, Leningrad, 1975 = Selecta Math. Sov. 1:4 (1981), 339–350.zbMATHGoogle Scholar
  3. 3.
    Godbillon C. Géométrie différentielle et méchanique analytique. Hermann, Paris, 1969.zbMATHGoogle Scholar
  4. 4.
    Arnold V.I. Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1980.Google Scholar
  5. 5.
    Vershik A.M. Several remarks on infinite-dimensional problems of linear programming.-Usp. Mat. Nauk 25:5 (1970), 117–124.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Vershik A.M., Chernjakov A.G. Fields of convex polytops and Pareto-Smale optimum.-In: Optimization, Novosibirsk, 1982. (To be publish in Selecta Mathematica Sovietica).Google Scholar
  7. 7.
    Chaplygin S.A. Studies on Dynamics of Non-Holonomic Systems, Moscow, 1949 (in Russian).Google Scholar
  8. 8.
    Dobronravov V.V. Foundations of Mechanics of Non-Holonomic Systems, Moscow, 1970 (in Russian).Google Scholar
  9. 9.
    Neimark I.I., Fufaev N.A. Dynamics of Non-Holonomic Systems, Moscow, 1967 (in Russian).Google Scholar
  10. 10.
    Gohman A.V. Differential-Geometric Foundations of the Classical Dynamics of Systems, Saratov, 1969 (in Russian).Google Scholar
  11. 11.
    Ter-Krikorov A.M. Optimal Control and Mathematical Economics, Moscow, 1977 (in Russian).Google Scholar
  12. 12.
    Novikov S.P. Variational methods and periodic solutions of the Kirchhoff type equations.-Funct. Anal. Appl. 15:4 (1981).Google Scholar
  13. 13.
    Kobayashi S., Nomizu K. Foundations of Differential Geometry, vol. 1, Interscience, New York, 1963.zbMATHGoogle Scholar
  14. 14.
    Busemann H. The Geometry of Geodesics, Academic Press, New York, 1955.zbMATHGoogle Scholar
  15. 15.
    Manakov S.V. Remarks on integrating the Euler equations of dynamics of n-dimensional rigid body.-Funct. Anal. Appl. 10:4(1976)Google Scholar
  16. 16.
    Mistchenko A.S., Fomenko A.T. Generalized Liouville's method of integrating Hamiltonian systems.-Funct. Anal. Appl. 12:2 (1978).Google Scholar
  17. 17.
    Alekseev V.M., Tihomirov V.M., Fomin S.V. Optimal Control, Moscow, 1981 (in Russian).Google Scholar
  18. 18.
    Bishop R.L., Crittenden R.J. Geometry of Manofolds, Academic Press, New York, 1964.zbMATHGoogle Scholar
  19. 19.
    Stenberg S. Lectures on differental geometry. N.J., 1964.Google Scholar
  20. 20.
    Perelomov A. Integrable systems of classical mechanic and Lie algebras. Systems with constraints. ITEP-116, preprint, Moscow, 1983 (in Russian).Google Scholar
  21. 21.
    Gershkovich V. Twoside estimations of a metric which generated by absolutely nonholonomic distribution on a Riemanian manifold. Soviet Doklady, 1984.Google Scholar
  22. 22.
    Vershik A., Chernjakov A. Critical points of fields of convex polytopes and the Pareto-Smale optimum with respect to a convex cone. Soviet Math. Dokl. Vol. 26 (1982), No.2.Google Scholar
  23. 23.
    Gliklikh Yu. Riemanian parallel translation in nonlinear mechanics. See this volume.Google Scholar
  24. 24.
    Smirnov V. A course of higher mathematics. Vol. IV, p.1, Moscow, 1974 (in Russian).Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • A. M. Vershik
    • 1
  1. 1.Leningrad State UniversityLeningradUSSR

Personalised recommendations