Global Analysis — Studies and Applications I pp 257-277 | Cite as
The contact geometry and linear differential equations
Conference paper
First Online:
- 1 Citations
- 222 Downloads
Keywords
Symplectic Structure Contact Structure Homogeneous Function Contact Manifold Contact Geometry
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.V.P. Maslov, Teoriya vozmushchenii i asimptoticheskie metody (Theory of Perturbations and Asymptotic Methods), Moscow State University, Moscow, 1965 (in Russian) (French translation: Theorie des perturbations et methodes asymptotiques, Dunod, Ganthier-Villars, Paris, 1972).Google Scholar
- 2.V.P. Maslov, Operatornye metody (Operator Methods), Nauka, Moscow, 1973 (in Russian). MR 56 = 3647.zbMATHGoogle Scholar
- 3.L. Hormander, Fourier integral operators. I, Acta Math. 127(1971), 79–183. MR 52 = 9299.MathSciNetCrossRefzbMATHGoogle Scholar
- 4.V.E. Nazaikinskii, V.G. Oshmyan, B.Yu. Sternin, and V.E. Shatalov, Fourier integral operators and the canonical operator, Uspehi Mat. Nauk 36:2(1981), 81–140. = Russian Math. Surveys 36:2(1981), 93–161.MathSciNetzbMATHGoogle Scholar
- 5.V.I. Arnold, Matematicheskie metody klassicheskoi mekhaniki (Mathematical Methods of Classical Mechanics), Nauka, Moscow, 1974 (in Russian). MR 57 = 14032.Google Scholar
- 6.V.V. Lychagin, Local classification of first-order non-linear partial differential equations, Uspehi Mat. Nauk 30:1(1975), 101–171. MR 54 = 8691. = Russian Math. Surveys 30:1(1975), 105–175.MathSciNetGoogle Scholar
- 7.J.J. Duistrermaat and L. Hormander, Fourier integral operators. II, Acta Math. 128 (1972), 183–269. MR 52 = 9300.MathSciNetCrossRefzbMATHGoogle Scholar
- 8.B.Yu. Sternin, On regularization of the equations of subprincipal type, Uspehi Mat. Nauk 37:2(1982), 235–236. = Russian Math. Surveys 37:2(1982).MathSciNetzbMATHGoogle Scholar
- 9.V.E. Shatalov, Global asymptotic expansions in characteristic Cauchy problem for complex-analytical functions, Uspehi Mat. Nauk 35:4(1980), 181–182. = Russian Math. Surveys 35:4(1980).MathSciNetGoogle Scholar
- 10.B.Yu. Sternin and V.E. Shatalov, Legendre uniformization of analytical functions with ramification, Mat. Sb. 113(1980), 263–284.MathSciNetzbMATHGoogle Scholar
- 11.B.Yu. Sternin and V.E. Shatalov, Characteristic Cauchy problem on a complex-analytic manifold, in: Uravneniye ha mnogoobraziyakh (Equations on Manifolds), Voronezh State University, Voronezh, 1982, 83–104 (in Russian). See this volume.Google Scholar
- 12.B.Yu. Sternin and V.E. Shatalov, On a method of solution of equations with single characteristics, Mat. Sb. 116(1981), 29–71.MathSciNetzbMATHGoogle Scholar
- 13.M.V. Fedoryuk, Singularities of the kernels of Fourier integral operators and the asymptotic behaviour of the solution of the mixed problem, Uspehi Mat. Nauk 32:6(1977),67–115. MR 57 = 13580. = Russian Math. Surveys 32:6(1977), 67–120.MathSciNetGoogle Scholar
Copyright information
© Springer-Verlag 1984