Contiguous R.E. Degrees

  • Klaus Ambos-Spies
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1104)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.Ambos-Spies, Anti-mitotic recursively enumerable sets, Zeitschrift f. Math. Logik u. Grundlagen d. Mathematik, to appear.Google Scholar
  2. 2.
    K.Ambos-Spies, Cupping and noncapping in the r.e. wtt and Turing degrees, to appear.Google Scholar
  3. 3.
    K.Ambos-Spies, Automorphism bases for the r.e. degrees, to appear.Google Scholar
  4. 4.
    K.Ambos-Spies and P.A.Fejer, Degree theoretical splitting properties of recursively enumerable sets, to appear.Google Scholar
  5. 5.
    K.Ambos-Spies, C.G.Jockusch, Jr., R.A.Shore and R.I.Soare, An algebraic decomposition of the recursively enumerable degrees and the coincidence of several degree classes with the promptly simple degrees, Trans. A.M.S., to appear.Google Scholar
  6. 6.
    K.Ambos-Spies and R.I.Soare, One-types of the recursively enumerable degrees, in preparation.Google Scholar
  7. 7.
    P.F.Cohen, Weak truth table reducibility and the pointwise ordering of 1-1 recursive functions, Thesis, Univ. Illinois Urbana-Champaign (1975)Google Scholar
  8. 8.
    P.A. Fejer, Branching degrees above low degrees, Trans. A.M.S. 273 (1982) 157–180MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    A.H. Lachlan, Lower bounds for pairs of recursively enumerable degrees, Proc. London Math. Soc. 16 (1966) 537–569.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    A.H. Lachlan, Embedding nondistributive lattices in the recursively enumerable degrees, Springer Lecture Notes Math. 255 (1972) 149–177 (Conference in Math. Logic, London 1970)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    A.H. Lachlan, Bounding minimal pairs, J. Symbolic Logic 44 (1979) 626–642MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    R.E. Ladner, A completely mitotic nonrecursive recursively enumerable degree, Trans. A.M.S. 184 (1973) 479–507.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    R.E. Ladner and L.P. Sasso, The weak truth table degrees of recursively enumerable sets, Ann. Math. Logic 4 (1975) 429–448.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    R.W. Robinson, Interpolation and embedding in the recursively enumerable degrees, Ann. of Math. (2) 93 (1971) 285–314.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    R.I.Soare, Fundamental methods for constructing recursively enumerable degrees, in Recursion Theory: its Generalisations and Aplications, F.R.Drake and S.S. Wainer (Ed.), Cambridge University Press, Lecture Notes 45 (1980) 1–51.Google Scholar
  16. 16.
    R.I.Soare, Tree arguments in recursion theory and the O'''-priority method, to appear.Google Scholar
  17. 17.
    M.Stob, wtt-degrees and T-degrees of recursively enumerable sets, J.Symbolic Logic, to appear.Google Scholar
  18. 18.
    S.K. Thomason, Sublattices of the recursively enumerable degrees, Zeitschrift f. Math. Logik u. Grundlagen d. Mathematik 17 (1971) 273–280.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Klaus Ambos-Spies
    • 1
  1. 1.Lehrstuhl für Informatik IIUniversität DortmundDortmund 50

Personalised recommendations