Equations over function fields

  • R. C. Mason
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1068)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Baker, A. Contributions to the theory of Diophantine equations: I On the representation of integers by binary forms, Philos. Trans. Roy. Soc. London Ser. A263 (1968), 173–191.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Baker, A. and Coates, J. Integer points on curves of genus 1, Proc. Camb. Philos. Soc. 67(1970), 595–602.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Mason, R.C. On Thue’s equation over function fields, J. London Math. Soc. Ser. 2 24 (1981), 414–426.CrossRefMATHGoogle Scholar
  4. [4]
    Mason, R.C. The hyperelliptic equation over function fields, Proc. Camb. Philos. Soc. 93(1983), 219–230.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    Mason, R.C. Diophantine equations over function fields, LMS Lecture Notes, Cambridge University Press, to appear.Google Scholar
  6. [6]
    Osgood, C.F. An effective lower bound on the "Diophantine approximation" of algebraic functions by rational functions, Mathematika 20(1973), 4–15.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Schmidt, W.M. Thue’s equation over function fields, J. Austral. Math. Soc. Ser.A 25(1978), 385–422.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Schmidt, W.M. Polynomial solutions of F(x,y) = zn. Queen’s Papers in Pure Appl. Math., 54(1980), 33–65Google Scholar
  9. [9]
    Thue, A. Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math. 135(1909), 284–305.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • R. C. Mason
    • 1
  1. 1.Gonville & Caius CollegeCambridgeUK

Personalised recommendations