Equations over function fields

  • R. C. Mason
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1068)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Baker, A. Contributions to the theory of Diophantine equations: I On the representation of integers by binary forms, Philos. Trans. Roy. Soc. London Ser. A263 (1968), 173–191.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Baker, A. and Coates, J. Integer points on curves of genus 1, Proc. Camb. Philos. Soc. 67(1970), 595–602.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Mason, R.C. On Thue’s equation over function fields, J. London Math. Soc. Ser. 2 24 (1981), 414–426.CrossRefMATHGoogle Scholar
  4. [4]
    Mason, R.C. The hyperelliptic equation over function fields, Proc. Camb. Philos. Soc. 93(1983), 219–230.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    Mason, R.C. Diophantine equations over function fields, LMS Lecture Notes, Cambridge University Press, to appear.Google Scholar
  6. [6]
    Osgood, C.F. An effective lower bound on the "Diophantine approximation" of algebraic functions by rational functions, Mathematika 20(1973), 4–15.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Schmidt, W.M. Thue’s equation over function fields, J. Austral. Math. Soc. Ser.A 25(1978), 385–422.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Schmidt, W.M. Polynomial solutions of F(x,y) = zn. Queen’s Papers in Pure Appl. Math., 54(1980), 33–65Google Scholar
  9. [9]
    Thue, A. Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math. 135(1909), 284–305.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • R. C. Mason
    • 1
  1. 1.Gonville & Caius CollegeCambridgeUK

Personalised recommendations