Stochastic differential equations and stochastic flows of diffeomorphisms

  • H. Kunita
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1097)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Baxendale, Wiener processes on manifolds of maps, Proc. Royal Soc. Edinburgh, 87A (1980), 127–152.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J. M. Bismut, A generalized formula of Itô and some other properties of stochastic flows, Z. W. 55 (1981), 331–350.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    J. M. Bismut, Mécanique aléatoire, Lecture Notes in Math. 866 (1981).Google Scholar
  4. [4]
    Yu. N. Blagovescenskii-M. I. Freidlin, Certain properties of diffusion processes depending on a parameter, Soviet Math. Dokl. 2 (1961), 633–636.zbMATHGoogle Scholar
  5. [5]
    K. T. Chen, Decomposition of differential equations, Math. Annalen 146 (1962), 263–278.CrossRefzbMATHGoogle Scholar
  6. [6]
    J. L. Doob, Stochastic processes, John Wiley and Sons, New York, 1953.zbMATHGoogle Scholar
  7. [7]
    K. D. Elworthy, Stochastic dynamical system and their flows, Stochastic analysis ed. by A. Friedman and M. Pinsky, 79–95, Academic Press, New York, 1978.Google Scholar
  8. [8]
    M. Emery, Une topologie sur l'espace des semimartingales, Séminaire de Prob. XIII, Lecture Notes in Math. 721 (1979), 260–280.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    M. Fliess-D. Normand-Cyrot, Algébres de Lie nilpotents, formule de Baker-Campbell-Hausdorff et intégrales iterées de K. T. Chen, Séminaire de Prob. XVI, Lecture Notes in Math., to appear.Google Scholar
  10. [10]
    T. Funaki, Construction of a solution of random transport equation with boundary condition, J. Math. Soc. Japan 31 (1979), 719–744.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    N. Ikeda-S. Manabe, Stochastic integral of differential forms and its applications, Stochastic Analysis ed. by A. Friedman and M. Pinsky, 175–185, New York, 1978.Google Scholar
  12. [12]
    N. Ikeda-S. Manabe, Integral of differential forms along the path of diffusion processes, Publ. RIMS, Kyoto Univ. 15 (1979), 827–852.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    N. Ikeda-S. Watanabe, Stochastic differential equations and diffusion processes, North Holland-Kodansha, 1981.Google Scholar
  14. [14]
    N. Ikeda-S. Watanabe, Stochastic flow of diffeomorphisms, to appear.Google Scholar
  15. [15](1)
    K. Itô, Stochastic differential equations in a differentiable manifold Nagoya Math. J. 1 (1950), 35–37MathSciNetCrossRefzbMATHGoogle Scholar
  16. [15](2)
    Mem. Coll. Sci. Univ. Kyoto Math. 28 (1953), 81–85.MathSciNetzbMATHGoogle Scholar
  17. [16]
    K. Itô, Lectures on stochastic processes, Tata Institute of Fundamental Research, Bombay, 1960.Google Scholar
  18. [17]
    K. Itô, The Brownian motion and tensor fields on Riemannian manifold, Proc. Intern. Congr. Math. Stockholm, 536–539, 1963.Google Scholar
  19. [18]
    K. Itô, Stochastic parallel displacement, Probabilistic methods in differential equations, Lecture Notes in Math. 451 (1975), 1–7.CrossRefGoogle Scholar
  20. [19]
    S. Kobayashi-K. Nomizu, Fundations of differential geometry I, John Wiley and Sons, New York, 1963.zbMATHGoogle Scholar
  21. [20]
    A. J. Krener-C. Lobry, The complexity of solutions of stochastic differential equations, Stochastics 4 (1981), 193–203.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [21]
    N. V. Krylov-B. L. Rozovsky, On the first integrals and Liouville equations for diffusion processes, Proc. Third Conf. Stoch. Diff. System, Lecture Notes in Control and Information Science, to appear.Google Scholar
  23. [22]
    H. Kunita, On the representation of solutions of stochastic differential equations, Séminaire des Probabilités XIV, Lecture Notes in Math. 784 (1980), 282–303.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [23]
    H. Kunita, On the decomposition of solutions of stochastic differential equations, Proc. Durham Conf. Stoch. Integrals, Lecture Notes in Math. 851 (1981), 213–255.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [24]
    H. Kunita, Some extensions of Itô's formula, Séminaire de Probabilités, XV, Lecture Notes in Math. 850 (1981), 118–141.MathSciNetCrossRefGoogle Scholar
  26. [25]
    H. Kunita, On backward stochastic differential equations, Stochastics 6 (1982), 293–313.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [26]
    H. Kunita, Stochastic differential equations and stochastic flows of homeomorphisms, to appear.Google Scholar
  28. [27]
    H. Kunita, Stochastic partial differential equations connected with non-linear filtering, to appear in the Proceedings of C.I.M.E. Session on Stochastic control and filtering, Cortona, 1981.Google Scholar
  29. [28]
    H. Kunita-S. Watanabe, On square integrable martingales, Nagoya Math. J. 30 (1967), 209–245.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [29]
    P. Malliavin, Un principe de transfert et son application au calcul de variations, C. R. Acad. Sci. Paris, 284, Serie A (1977), 187–189.MathSciNetzbMATHGoogle Scholar
  31. [30]
    P. Malliavin, Stochastic calculus of variation and hypoelliptic operators, Proc. Intern Symp. SDE Kyoto 1976 (ed. by K. Itô) 195–263, Kinokuniya, Tokyo.Google Scholar
  32. [31]
    P. Malliavin, Géométrie differentielle stochastique, Les Presses de l'Université de Montréal, Montréal, 1978.zbMATHGoogle Scholar
  33. [32]
    Y. Matsushima, Differentiable manifolds, Marcel Dekker, New York, 1972.zbMATHGoogle Scholar
  34. [33]
    P. A. Meyer, Probability and potentials, Blaisdel, Waltham, Massachusetts, 1966.zbMATHGoogle Scholar
  35. [34]
    P. A. Meyer, Integrales stochastiques I-IV, Séminaire de Prob. I, Lecture Notes in Math. 39 (1967), 72–162.CrossRefGoogle Scholar
  36. [35]
    P. A. Meyer, Geometrie stochastique sans larmes, Séminaire de Prob. XV, Lecture Notes in Math. 850 (1981), 44–102.CrossRefGoogle Scholar
  37. [36]
    P. A. Meyer, Flot d'une equation differentielle stochastique, Séminaire de Prob. XV, Lecture Notes in Math. 850 (1981), 103–117.CrossRefGoogle Scholar
  38. [37]
    J. Neveu, Bases mathématiques du calcul des probabilités, Masson et Cie., Paris, 1964.zbMATHGoogle Scholar
  39. [38]
    B. L. Rozovsky, On the Itô-Ventzel formula, Vestnik of Moscow University, N. 1 (1973), 26–32. (In Russian).Google Scholar
  40. [39]
    I. Shigekawa, On stochastic horizontal lifts, Z. W. 59 (1982), 211–222.MathSciNetCrossRefzbMATHGoogle Scholar
  41. [40]
    D. W. Stroock-S. R. S. Varadhan, On the support of diffusion processes with application to the strong maximum principle, Proc. Sixth Berkeley Symp. Math. Statist. Prob. III, 333–359, Univ. California Press, Berkeley, 1972.zbMATHGoogle Scholar
  42. [41]
    D. W. Stroock-S. R. S. Varadhan, Multidimensional diffusion processes, Springer-Verlag, Berlin, 1979.zbMATHGoogle Scholar
  43. [42]
    A. D. Ventcel', On equations of the theory of conditional Markov processes, Theory of Prob. Appl. 10 (1965), 357–361.MathSciNetCrossRefGoogle Scholar
  44. [43]
    S. Watanabe, Flow of diffeomorphisms difined by stochastic differential equation on manifolds and their differentials and variations (in Japanese), Suriken Kokyuroku 391 (1980), 1–23.Google Scholar
  45. [44]
    T. Yamada-Y. Ogura, On the strong comparison theorems for solutions of stochastic differetial equations, Z. W. 56 (1981), 3–19.MathSciNetCrossRefzbMATHGoogle Scholar
  46. [45]
    Y. Yamato, Stochastic differential equations and nilpotent Lie algebra, Z. W. 47 (1979), 213–229.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • H. Kunita

There are no affiliations available

Personalised recommendations