Advertisement

Stochastic differential equations and stochastic flows of diffeomorphisms

  • H. Kunita
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1097)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Baxendale, Wiener processes on manifolds of maps, Proc. Royal Soc. Edinburgh, 87A (1980), 127–152.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J. M. Bismut, A generalized formula of Itô and some other properties of stochastic flows, Z. W. 55 (1981), 331–350.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    J. M. Bismut, Mécanique aléatoire, Lecture Notes in Math. 866 (1981).Google Scholar
  4. [4]
    Yu. N. Blagovescenskii-M. I. Freidlin, Certain properties of diffusion processes depending on a parameter, Soviet Math. Dokl. 2 (1961), 633–636.zbMATHGoogle Scholar
  5. [5]
    K. T. Chen, Decomposition of differential equations, Math. Annalen 146 (1962), 263–278.CrossRefzbMATHGoogle Scholar
  6. [6]
    J. L. Doob, Stochastic processes, John Wiley and Sons, New York, 1953.zbMATHGoogle Scholar
  7. [7]
    K. D. Elworthy, Stochastic dynamical system and their flows, Stochastic analysis ed. by A. Friedman and M. Pinsky, 79–95, Academic Press, New York, 1978.Google Scholar
  8. [8]
    M. Emery, Une topologie sur l'espace des semimartingales, Séminaire de Prob. XIII, Lecture Notes in Math. 721 (1979), 260–280.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    M. Fliess-D. Normand-Cyrot, Algébres de Lie nilpotents, formule de Baker-Campbell-Hausdorff et intégrales iterées de K. T. Chen, Séminaire de Prob. XVI, Lecture Notes in Math., to appear.Google Scholar
  10. [10]
    T. Funaki, Construction of a solution of random transport equation with boundary condition, J. Math. Soc. Japan 31 (1979), 719–744.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    N. Ikeda-S. Manabe, Stochastic integral of differential forms and its applications, Stochastic Analysis ed. by A. Friedman and M. Pinsky, 175–185, New York, 1978.Google Scholar
  12. [12]
    N. Ikeda-S. Manabe, Integral of differential forms along the path of diffusion processes, Publ. RIMS, Kyoto Univ. 15 (1979), 827–852.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    N. Ikeda-S. Watanabe, Stochastic differential equations and diffusion processes, North Holland-Kodansha, 1981.Google Scholar
  14. [14]
    N. Ikeda-S. Watanabe, Stochastic flow of diffeomorphisms, to appear.Google Scholar
  15. [15](1)
    K. Itô, Stochastic differential equations in a differentiable manifold Nagoya Math. J. 1 (1950), 35–37MathSciNetCrossRefzbMATHGoogle Scholar
  16. [15](2)
    Mem. Coll. Sci. Univ. Kyoto Math. 28 (1953), 81–85.MathSciNetzbMATHGoogle Scholar
  17. [16]
    K. Itô, Lectures on stochastic processes, Tata Institute of Fundamental Research, Bombay, 1960.Google Scholar
  18. [17]
    K. Itô, The Brownian motion and tensor fields on Riemannian manifold, Proc. Intern. Congr. Math. Stockholm, 536–539, 1963.Google Scholar
  19. [18]
    K. Itô, Stochastic parallel displacement, Probabilistic methods in differential equations, Lecture Notes in Math. 451 (1975), 1–7.CrossRefGoogle Scholar
  20. [19]
    S. Kobayashi-K. Nomizu, Fundations of differential geometry I, John Wiley and Sons, New York, 1963.zbMATHGoogle Scholar
  21. [20]
    A. J. Krener-C. Lobry, The complexity of solutions of stochastic differential equations, Stochastics 4 (1981), 193–203.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [21]
    N. V. Krylov-B. L. Rozovsky, On the first integrals and Liouville equations for diffusion processes, Proc. Third Conf. Stoch. Diff. System, Lecture Notes in Control and Information Science, to appear.Google Scholar
  23. [22]
    H. Kunita, On the representation of solutions of stochastic differential equations, Séminaire des Probabilités XIV, Lecture Notes in Math. 784 (1980), 282–303.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [23]
    H. Kunita, On the decomposition of solutions of stochastic differential equations, Proc. Durham Conf. Stoch. Integrals, Lecture Notes in Math. 851 (1981), 213–255.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [24]
    H. Kunita, Some extensions of Itô's formula, Séminaire de Probabilités, XV, Lecture Notes in Math. 850 (1981), 118–141.MathSciNetCrossRefGoogle Scholar
  26. [25]
    H. Kunita, On backward stochastic differential equations, Stochastics 6 (1982), 293–313.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [26]
    H. Kunita, Stochastic differential equations and stochastic flows of homeomorphisms, to appear.Google Scholar
  28. [27]
    H. Kunita, Stochastic partial differential equations connected with non-linear filtering, to appear in the Proceedings of C.I.M.E. Session on Stochastic control and filtering, Cortona, 1981.Google Scholar
  29. [28]
    H. Kunita-S. Watanabe, On square integrable martingales, Nagoya Math. J. 30 (1967), 209–245.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [29]
    P. Malliavin, Un principe de transfert et son application au calcul de variations, C. R. Acad. Sci. Paris, 284, Serie A (1977), 187–189.MathSciNetzbMATHGoogle Scholar
  31. [30]
    P. Malliavin, Stochastic calculus of variation and hypoelliptic operators, Proc. Intern Symp. SDE Kyoto 1976 (ed. by K. Itô) 195–263, Kinokuniya, Tokyo.Google Scholar
  32. [31]
    P. Malliavin, Géométrie differentielle stochastique, Les Presses de l'Université de Montréal, Montréal, 1978.zbMATHGoogle Scholar
  33. [32]
    Y. Matsushima, Differentiable manifolds, Marcel Dekker, New York, 1972.zbMATHGoogle Scholar
  34. [33]
    P. A. Meyer, Probability and potentials, Blaisdel, Waltham, Massachusetts, 1966.zbMATHGoogle Scholar
  35. [34]
    P. A. Meyer, Integrales stochastiques I-IV, Séminaire de Prob. I, Lecture Notes in Math. 39 (1967), 72–162.CrossRefGoogle Scholar
  36. [35]
    P. A. Meyer, Geometrie stochastique sans larmes, Séminaire de Prob. XV, Lecture Notes in Math. 850 (1981), 44–102.CrossRefGoogle Scholar
  37. [36]
    P. A. Meyer, Flot d'une equation differentielle stochastique, Séminaire de Prob. XV, Lecture Notes in Math. 850 (1981), 103–117.CrossRefGoogle Scholar
  38. [37]
    J. Neveu, Bases mathématiques du calcul des probabilités, Masson et Cie., Paris, 1964.zbMATHGoogle Scholar
  39. [38]
    B. L. Rozovsky, On the Itô-Ventzel formula, Vestnik of Moscow University, N. 1 (1973), 26–32. (In Russian).Google Scholar
  40. [39]
    I. Shigekawa, On stochastic horizontal lifts, Z. W. 59 (1982), 211–222.MathSciNetCrossRefzbMATHGoogle Scholar
  41. [40]
    D. W. Stroock-S. R. S. Varadhan, On the support of diffusion processes with application to the strong maximum principle, Proc. Sixth Berkeley Symp. Math. Statist. Prob. III, 333–359, Univ. California Press, Berkeley, 1972.zbMATHGoogle Scholar
  42. [41]
    D. W. Stroock-S. R. S. Varadhan, Multidimensional diffusion processes, Springer-Verlag, Berlin, 1979.zbMATHGoogle Scholar
  43. [42]
    A. D. Ventcel', On equations of the theory of conditional Markov processes, Theory of Prob. Appl. 10 (1965), 357–361.MathSciNetCrossRefGoogle Scholar
  44. [43]
    S. Watanabe, Flow of diffeomorphisms difined by stochastic differential equation on manifolds and their differentials and variations (in Japanese), Suriken Kokyuroku 391 (1980), 1–23.Google Scholar
  45. [44]
    T. Yamada-Y. Ogura, On the strong comparison theorems for solutions of stochastic differetial equations, Z. W. 56 (1981), 3–19.MathSciNetCrossRefzbMATHGoogle Scholar
  46. [45]
    Y. Yamato, Stochastic differential equations and nilpotent Lie algebra, Z. W. 47 (1979), 213–229.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • H. Kunita

There are no affiliations available

Personalised recommendations