Advertisement

Harmonic interpolation

  • Svante Janson
  • Jaak Peetre
Contributed Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1070)

Keywords

Banach Space Harmonic Function Interpolation Space Boundary Estimate Harmonic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agmon, S., Nirenberg, L.: Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space. Comm. Pure Appl. Math. 20, 207–229 (1967).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bergh, J., Löfström, J.: Interpolation spaces. An introduction. (Grundlehren 223.) Berlin-Heidelberg-New York: Springer-Verlag 1976.zbMATHGoogle Scholar
  3. 3.
    Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis. (Research notes in mathematics 76.) Boston-London-Melbourne: Pitman 1982.zbMATHGoogle Scholar
  4. 4.
    Calderón, A. P.: Intermediate spaces and interpolation. Studia Math. (Special Seies) 1, 31–34 (1963).MathSciNetzbMATHGoogle Scholar
  5. 5.
    Calderón, A. P.: Intermediate spaces and interpolation, the complex method. Studia Math. 24, 113–190 (1964).MathSciNetzbMATHGoogle Scholar
  6. 6.
    Coifman, R., Cwikel, M., Rochberg, R., Sagher, Y., Weiss, G.: A theory of complex interpolation of families of Banach spaces. Advances Math. 43, 203–229 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cwikel, M.: personal communication.Google Scholar
  8. 8.
    Cwikel, M., Janson, S.: Real and complex interpolation methods for finite and infinite families of Banach spaces.Google Scholar
  9. 9.
    Diestel, J., Uhl, J. J.: Vector measures. (Mathematical surveys 15.) Providence: American Mathematical Society 1967.zbMATHGoogle Scholar
  10. 10.
    Favini, A.: Su una estansione del metodo d'interpolazione complesso. Rend. Sem. Mat. Univ. Padova 47, 244–298 (1972).MathSciNetzbMATHGoogle Scholar
  11. 11.
    Fefferman, C., Stein, E.: Hp spaces of several variables. Acta Math. 129, 137–193 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fernandez, D. L.: An extension of the complex method of interpolation. Boll. Un. Mat. Ital. B., 18, 721–732 (1981).MathSciNetzbMATHGoogle Scholar
  13. 13.
    Gilbert, R. P., Buchanan, J. L.: First order elliptic systems. A function theoretic approach. New York, London, Paris, San Diego, San Fransisco, Saõ Paulo, Tokyo, Toronto: Academic Press 1983.zbMATHGoogle Scholar
  14. 14.
    Horváth, J.: Sur les fonctions conjuguées à plusieurs variables. Indag. Math. 15, 15–29 (1953).zbMATHGoogle Scholar
  15. 15.
    Kahane, J.-P.: personal communication.Google Scholar
  16. 16.
    Knops, R. J. (ed.): Symposium on non-well-posed problems and logarithmic convexity (held in Heriot-Watt university, Edinburgh/Scotland, March 22–24, 1972). (Lecture notes 316.) Berlin-Heidelberg-New York: Springer-Verlag 1973.zbMATHGoogle Scholar
  17. 17.
    Kreĭn, S. G., Nikolova, L. I.: Holomorphic functions in a family of Banach spaces, interpolation. Dokl. Akad. Nauk SSSR 250, 547–550 (1980) [Russian].MathSciNetGoogle Scholar
  18. 18.
    Landys, E. M.: A three-sphere theorem. Dokl. Akad. Nauk SSSR 148, 227–229 (1963) [Russian].Google Scholar
  19. 19.
    Lasalle, M.: Deux généralizations du "théorème des trois circles" de Hadamard. Math. Ann. 249 (1980), 163–176.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lions, J.-L.: Une construction d'espaces d'interpolation. C. R. Acad. Sci. Paris 251, 1853–1855 (1960).MathSciNetzbMATHGoogle Scholar
  21. 21.
    Lions, J.-L.: Equations différentielles opérationnelles et problemes aux limites. (Grundlehren 111.) Berlin-Göttingen-Heidelberg: Springer-Verlag 1961.CrossRefzbMATHGoogle Scholar
  22. 22.
    Peetre, J.: Duality for Fernandez type spaces. Math. Nachr. [to appear].Google Scholar
  23. 23.
    Peetre, J.: Complex section theory, a generalization of complex function theory. (Conference on Interpolation Spaces, Aug. 4.–Aug. 5, 1982.) Technical report. Lund: 1982.Google Scholar
  24. 24.
    Protter, M. H., Weinberger, H.: Maximum principles in differential equations. Englewood Cliffs: Prentice-Hall 1967.zbMATHGoogle Scholar
  25. 25.
    Radó, T.: Subharmonic functions. (Ergebnisse.) Berlin: Springer 1937.CrossRefzbMATHGoogle Scholar
  26. 26.
    Rochberg, R.: Interpolation of Banach spaces and negatively curved vector bundles. Pre-print.Google Scholar
  27. 27.
    Rochberg, R., Weiss, G.: Derivatives of analytic families of Banach spaces. Pre-print.Google Scholar
  28. 28.
    Schechter, M.: Complex interpolation. Compositio Math. 18, 117–147 (1967).MathSciNetzbMATHGoogle Scholar
  29. 29.
    Stein, E., Weiss, G.: On the theory of harmonic functions of several variables, I. The theory of Hp-spaces. Acta Math. 103 25–62 (1960).MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Vekua, N. I.: Generalized analytic functions. Moscow: Gos. Izdat. Fiz.-Mat. Lit. 1958 [Russian].zbMATHGoogle Scholar
  31. 31.
    Weinstein, A.: On a class of partial differential equations of even order. Ann. Mat. Pura Appl. 39, 245–254 (1955).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Svante Janson
    • 1
  • Jaak Peetre
    • 2
  1. 1.Matematiska institutionenUppsalaSweden
  2. 2.Matematiska institutionenLundSweden

Personalised recommendations