Bias- and efficiency-robustness of general M-estimators for regression with random carriers

  • Ricardo Maronna
  • Oscar Bustos
  • Victor Yohai
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 757)


Asymptotic Normality Asymptotic Variance Influence Function Robust Regression Breakdown Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beaton, A.E. and Tukey, J.W. (1974). The fitting of power series, meaning polynomials, illustrated on bandspectroscopic data. Technometrics 16, 147–185.CrossRefzbMATHGoogle Scholar
  2. Daniel, C. and Wood, F.S. (1971). Fitting equations to data. Wiley, New York.zbMATHGoogle Scholar
  3. Denby, L. and Larsen, (1977). Robust regression estimators compared via Monte Carlo. Comm. Stat. A6 (4), 335–362.CrossRefzbMATHGoogle Scholar
  4. Hampel, F.R. (1971). A general qualitative definition of robustness. Ann. Math. Statist. 42, 1887–1896.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Hampel, F.R. (1974). The influence curve and its role in robust estimation. J. Amer. Statist. Assoc. 69, 383–394.MathSciNetCrossRefzbMATHGoogle Scholar
  6. Hampel, F.R. (1977). Modern trends in the theory of robustness. Research report No. 13. Fachgruppe für Statistik-ETH Zürich.Google Scholar
  7. Hampel, F.R. (1978). Optimally bounding the gross-error-sensitivity and the influence of position in factor space. Research report No. 18. Fachgruppe für Statistik-ETH Zürich.Google Scholar
  8. Hill, R.W. (1977). Robust regression when there are outliers in the carriers. Ph.D.Thesis, Statistics Department, Harvard University.Google Scholar
  9. Holland, P.W. (1973). Monte Carlo for robust regression: the swindle unmasked. Working paper No. 10. National Bureau of Economic Research, Inc.Google Scholar
  10. Huber, P.J. (1964). Robust estimation of a location paprameter. Ann. Math. Statist. 35, 73–101.MathSciNetCrossRefzbMATHGoogle Scholar
  11. Huber, P.J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. Proc. Fifth Berkeley Symp. Prob. 1, 221–233. University of California Press.MathSciNetzbMATHGoogle Scholar
  12. Huber, P.J. (1973). Robust regression: Asymptotic, conjectures, and Monte Carlo. Ann. Statist. 1, 799–821.MathSciNetCrossRefzbMATHGoogle Scholar
  13. Huber, P.J. (1977). Robust covariances. In: Statistical Decision Theory and Related Topics II, 165–191. Academic Press, New York.CrossRefGoogle Scholar
  14. Krasker, W.S. (1978). Estimation in linear regression models with disparate data points. Unpublished manuscript.Google Scholar
  15. Mallows, C. (1975). On some topics in robustness. Unpublished memorandum, Bell Telephone Laboratory, Murray Hill.Google Scholar
  16. Maronna, R.A. (1976) Robust M-estimators of multivariate location and scatter. Ann. Statist. 4, 51–67.MathSciNetCrossRefzbMATHGoogle Scholar
  17. Maronna, R.A. and Yohai, V.J. (1978). Asymptotic behavior of general M-estimators for regression and scale with random carriers. Submitted for publication.Google Scholar
  18. Yohai, V.J. and Klein, R. (1978). Asymptotic behavior of iterative M-estimators. Unpublished manuscript.Google Scholar
  19. Yohai, V.J. and Maronna, R.A. (1976). Location estimators based on linear combinations of modified order statistics. Comm. Stat. A5, 481–486.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Ricardo Maronna
    • 1
    • 2
  • Oscar Bustos
    • 1
    • 2
  • Victor Yohai
    • 1
    • 2
  1. 1.Eidgenössische Technische Hochschule ZürichUniversidade Federal de PernambucoSwitzerland
  2. 2.Universidad Nacional de Buenos AiresArgentina

Personalised recommendations