Scalable parallelization of harmonic balance simulation

  • David L. Rhodes
  • Apostolos Gerasoulis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1586)

Abstract

A new approach to parallelizing harmonic balance simulation is presented. The technique leverages circuit substructure to expose potential parallelism in the form of a directed, acyclic graph (dag) of computations. This dag is then allocated and scheduled using various linear clustering techniques. The result is a highly scalable and efficient approach to harmonic balance simulation. Two large examples, one from the integrated circuit regime and another from the communication regime, executed on three different parallel computers are used to demonstrate the efficacy of the approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    http://netlib.att.com/netlib/minpack/.Google Scholar
  2. 2.
    Ghieth A. Adandah and Edward S. Davidson. Modeling the communication performance of the IBM SP2. In Proc. of 10 th IEEE. Int. Parallel Processing Symp., pages 249–57, 15–19 April 1996. Honolulu, HI.Google Scholar
  3. 3.
    C. Chen and Y. Hu. A practical scheduling algorithm for parallel LU factorization in circuit simulation. In Proc of IEEE Int. Symp. on Circuits and Systems, pages 1788–91, 8–11 May 1989. Portland, OR.Google Scholar
  4. 4.
    Benjamin Epstein, Stewart Perlow, David Rhodes, J. Schepps, M. Ettenberg, and R. Barton. Large-signal MESFET characterization using harmonic balance. In IEEE Microwave Theory and Techniques-S Digest, pages 1045–8, paper NN-2, May 1988. New York, NY.Google Scholar
  5. 5.
    Michael R. Garry and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-completeness. W.H. Freeman, and Company, New York, NY, 1979.Google Scholar
  6. 6.
    A. Gerasoulis and T. Yang. On the granularity and clustering of directed acyclic task graphs. IEEE Trans. on Parallel and Distributed Systems, 4(6):686–701, June 1993.CrossRefGoogle Scholar
  7. 7.
    W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with the Message Passing Interface. MIT Press, Cambridge, MA, 1994.Google Scholar
  8. 8.
    Volkhard Klinger. DiPaCS: a new concept for parallel circuit simulation. In Proc. of IEEE 28 th Annual Simulation Symposium, pages 32–41, 9–13 April 1995. Phoenix, AZ.Google Scholar
  9. 9.
    K. Kundert and A. Sangiovanni-Vincentelli. Finding the steady-state response of analog and microwave circuits. In IEEE 1988 Custom Integrated Circuits Conf. (CICC), 16–19 May 1988. paper 6.1, Rochester, NY.Google Scholar
  10. 10.
    K. Kundert, J. White, and A. Sangiovanni-Vincentelli. Steady-state Methods for Simulating Analog and Microwave Circuits. Kluwer Academic Publishers, Boston, MA, March 1990.MATHGoogle Scholar
  11. 11.
    Yong Luo. MPI performance study on the SGI Origin 2000. In IEEE Pacific Rim Conf. on Communications, Computers, and Signal Processing (PACRIM’97), pages 269–72, 20–22 August 1997. Victoria, CA.Google Scholar
  12. 12.
    K. Mayaram, P. Yang, J. Chern, R. Burch, L. Arledge, and P. Cox. A parallel block-diagonal preconditioned conjugate-gradient solution algorithm for circuit and device simulations. In IEEE Int. Conf. on Computer-Aided Design (ICCAD’90), pages 446–9, 11–15 Nov 1990. Santa Clara, CA.Google Scholar
  13. 13.
    PALLAS GmbH, Brühl, Germany. Vampir User’s Manual, Release 1.1.Google Scholar
  14. 14.
    D. Rhodes and B. Perlman. Parallel computation for microwave circuit simulation. IEEE Trans. on Microwave Theory and Techniques, 45(5):587–92, May 1997.CrossRefGoogle Scholar
  15. 15.
    V. Rizzoli, F. Mastri, F. Sgallari, and V. Frontini. The exploitation of sparsematrix techniques in conjunction with the piecewise harmonic balance method for nonlinear microwave circuit analysis. In IEEE Microwave Theory and Techniques-S Digest, volume 3, pages 1295–8, paper OO-5, May 1990. Dallas, TX.Google Scholar
  16. 16.
    M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The Complete Reference. MIT Press, Cambridge, MA, 1996.Google Scholar
  17. 17.
    E. Xia and R. Saleh. Parallel waveform-newton algorithms for circuit simulation. IEEE Trans. on Computer-Aided Design, 11(4):432–42, April 1992.CrossRefGoogle Scholar
  18. 18.
    Zhiwei, Xu and Kai Hwang. Modeling communication overhead: MPI and MPL performance on the IBM SP2. IEEE Parallel and Distributed Technology: Systems and Applications, 4(1):9–23, 1996.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • David L. Rhodes
    • 1
  • Apostolos Gerasoulis
    • 2
  1. 1.US Army CECOM/RDECFort MonmouthUSA
  2. 2.Rutgers UniversityPiscatawayUSA

Personalised recommendations