Advertisement

Processus ponctuels

  • J. Neveu
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 598)

Keywords

Point Process Nous Avons Relativement Compact Stochastic Point Process Stationary Point Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. ACQUAVIVA A. Théorème de relèvement et répartitions ponctuelles à points distincts en nombre localement fini. C.R. Acad. Sci. Paris 281 (1975) 297–300MathSciNetzbMATHGoogle Scholar
  2. ADAMOPOULOS L. Some counting and interval properties of the mutually-exciting processes J. Appl. Proba. 12 (1975) 78–86MathSciNetzbMATHCrossRefGoogle Scholar
  3. AMBARTZUMIAN R.V. Correlation properties of the intervals in the superpositions of independent stationary recurrent point processes. Studia Sci. Hung 4 (1969) 161–170MathSciNetGoogle Scholar
  4. Random plane mosaics. Dokl Akad Nauk SSSR 200 (1971) 255–258; Soviet Math Dokl 12 (1971) 1349–1353MathSciNetGoogle Scholar
  5. Palm distributions and superpositions of independent point processes in Rn. Stochastic point processes. PAW Lewis Ed. Wiley (1972) 626–645Google Scholar
  6. The solution of the Buffon-Sylvester problem in R3. ZfW 27 (1973) 53–74MathSciNetzbMATHGoogle Scholar
  7. AMBROSE W. Representation of ergodic flows. Ann. Math 42 (1941) 723–739MathSciNetzbMATHCrossRefGoogle Scholar
  8. AMBROSE W. et KAKUTANI S. Structure and continuity of measurable flows. Duke Math J. 9 (1942) 25–42MathSciNetzbMATHCrossRefGoogle Scholar
  9. AMBROSE W., HALMOS P.R. et KAKUTANI S. Decomposition of measures. Duke Math J. 9 (1942) 43–47MathSciNetzbMATHCrossRefGoogle Scholar
  10. BARTLETT M.S. An introduction to stochastic processes. Cambridge Univ. Press (1966) 2ème édition.Google Scholar
  11. BENÈS V.E. General stochastic processes in the theory of queues. Addison — Wesley Mass. 1963Google Scholar
  12. BENVENISTE A. Processus stationnaires et mesures de Palm du flot spécial sous une fonction. Thèse Paris.Google Scholar
  13. BENVENISTE A. et JACOD J. Intensité stochastique d’un processus ponctuel stationnaire, reconstruction du processus ponctuel à partir de son intensité stochastique C.R. Acad. Sci.Paris 280 (1975) 821–5MathSciNetzbMATHGoogle Scholar
  14. BEUTLER F.J. et LENEMAN OAZ The theory of stationary point processes. Acta Math. 116 (1966) 159–197MathSciNetzbMATHCrossRefGoogle Scholar
  15. BILLINGSLEY P. Convergence of probability measures. Wiley (1968)Google Scholar
  16. BLANCHARD F. Processus de points marqués et processus ramifiés. Ann. IHP 9 (1973) 259–276MathSciNetzbMATHGoogle Scholar
  17. BOEL R., VARAYIA P. et WONG E. Martingales of jump processes, I and II. Siam J. Control 13 (1975) 999–1061MathSciNetzbMATHCrossRefGoogle Scholar
  18. BOROVKOV A.A. On the first passage time for a class of processes with independent increments. Teor. Veraj. Prim. 10 (1965) 360–364MathSciNetzbMATHGoogle Scholar
  19. Some limit theorems in queuing theory. Teor. Veroj. Prim. 9 (1984) 608–625; 10 (1965) 409–437MathSciNetzbMATHGoogle Scholar
  20. Asymptotic analysis of some queuing systems. Teor. Veroj. Prim. 11 (1966) 675–682MathSciNetzbMATHGoogle Scholar
  21. Stochastic processes in queuing theory. Springer (1976)Google Scholar
  22. BREIMAN L. The Poisson tendency in traffic distribution. Ann. Math. Stat. 34 (1963) 308–311MathSciNetzbMATHCrossRefGoogle Scholar
  23. BREMAUD P. The martingale theory of point processes over the real half-line admitting an intensity. Proc. IRIA Conf., Lect. Notes Op. Res. and Math. Systems, Springer 107 (1974) 519–542.MathSciNetCrossRefGoogle Scholar
  24. An extension of Watanabe’s theorem of characterization of Poisson processes over the positive real half line. J. Appl. Prob. 12 (1975) 396–399MathSciNetzbMATHCrossRefGoogle Scholar
  25. Estimation de l’état d’une file d’attente et du temps de panne d’une machine par la méthode des semi-martingales. Adv. Appl. Proba. 7 (1975)Google Scholar
  26. On the information carried by a stochastic point process. Revue Cethedec 43 (1975)Google Scholar
  27. Bang-Bang controls of point processes. Adv. Appl. Proba 8 (1976) 385–394MathSciNetzbMATHCrossRefGoogle Scholar
  28. BREMAUD P. et JACOD J. Processus ponctuels et martingalesGoogle Scholar
  29. BRILLINGER D. The identification of point process systems. Ann. Proba 3 (1976) 909–929MathSciNetzbMATHCrossRefGoogle Scholar
  30. BROWN M. Sampling with random jitter. J. Soc. Ind. Appl. Math. 11 (1963) 460–473MathSciNetzbMATHCrossRefGoogle Scholar
  31. [2] An invariance property of Poisson processes. J. Appl. Proba 6 (1969) 453–458MathSciNetzbMATHCrossRefGoogle Scholar
  32. A property of Poisson processes and its applications to macroscopic equilibrum of particle systems. Ann. Math. Stat. 41 (1970) 1935–41zbMATHCrossRefGoogle Scholar
  33. Discrimination of point processes. Ann. Math. Stat. 42 (1971)Google Scholar
  34. CARTER D.S. et PRENTER P.M. Exponential spaces and counting processes. ZfW 21 (1972) 1–19MathSciNetzbMATHGoogle Scholar
  35. CHOQUET G. Theory of capacities. Ann. Fourier 5 (1953) 131–295MathSciNetzbMATHCrossRefGoogle Scholar
  36. CHOU C.S. et MEYER P.A. Représentation des martingales comme intégrales stochastiques dans les processus ponctuels. C.R. Acad. Sci. Paris A 278 (1974) 1561–3MathSciNetGoogle Scholar
  37. CHIMG K.L. Crudely stationary counting processes. Amer. Math. Monthly 79 (1972) 867–877MathSciNetzbMATHCrossRefGoogle Scholar
  38. CINLAR E. Superposition of point processes. Stochastic point processes, P. Lewis Ed., Wiley (1972) 549–606Google Scholar
  39. COHEN J.W. The single server queue. North-Holland, Amsterdam 1969zbMATHGoogle Scholar
  40. Asymptotic relations in queuing theory. Stoch. Prob. Appli 1 (1973) 107–124zbMATHCrossRefGoogle Scholar
  41. COX D.R. Renewal theory. Methuen’s monograph, London 1962zbMATHGoogle Scholar
  42. COX D.R. et LEWIS P.A.W. The statistical Analysis of series of Events. Methuen, London (1966); Trad. fr. Dunod 1969zbMATHCrossRefGoogle Scholar
  43. Multivariate point processes. Proc. 6th Berkeley Symp 3 (1972) 401–425MathSciNetzbMATHGoogle Scholar
  44. CRAMER H. et LEADBETTER M.R. Stationary and related stochastic processes. Wiley (1967)Google Scholar
  45. CRAMER H., LEADBETTER M.R. et SERFLING On distribution function moment relationships in a stationary point process. ZfW 18 (1971) 1–8MathSciNetzbMATHGoogle Scholar
  46. DALEY D.J. The correlation structure of the output process of some single server queuing systems. Ann. Math. Stat 39 (1968) 1007–19MathSciNetzbMATHCrossRefGoogle Scholar
  47. Asymptotic properties of stationary point processes with generalized clusters. ZfW 21 (1972) 65–76MathSciNetzbMATHGoogle Scholar
  48. Markovian processes whose jump epochs constitute a renewal process Quart. J. Math. Oxford 24 (1973) 97–105MathSciNetzbMATHCrossRefGoogle Scholar
  49. Poisson and alternating renewal processes with superposition a renewal process. Math. Nachr 57 (1973) 359–369MathSciNetzbMATHCrossRefGoogle Scholar
  50. Various concepts of orderliness for point-processes. Stochastic Geometry, Wiley (1974), 148–161Google Scholar
  51. Queuing output processes. Adv. Appl. Proba 8 (1976) 395–415MathSciNetzbMATHCrossRefGoogle Scholar
  52. DALEY D.J. et MILNE R.K. Orderliness, intensities and Palm-Khinchin equations for multivariate processes. J. Appl. Proba. 12 (1975) 383–389MathSciNetzbMATHCrossRefGoogle Scholar
  53. DALEY D.J. et OAKES D. Random walk point processes. ZfW 30 (1974) 1–16MathSciNetzbMATHGoogle Scholar
  54. DALEY D.J. et VERE-JONES D. A summary of the theory of point processes. Stochastic point processes, P. Lewis Ed. Wiley (1972) 299–383Google Scholar
  55. DAVIDSON R. Some arithmetic and geometry in probability theory. Thesis Cambridge 1968. Stochastic geometry, a memorial volume, Wiley 1974.Google Scholar
  56. DAVIS M.H.A. et ELLIOTT R.J. Representation of martingales of jump processes. Siam J. Control (1976)Google Scholar
  57. DAVIS M.H.A. et Optimal control of a jump process (1975)Google Scholar
  58. DAVIS M.H.A., KAILATH T. et SEGALL A. Non-linear filtering with counting observations. IEEE II 21 (1975) 143–150MathSciNetzbMATHGoogle Scholar
  59. DEBES H., KERSTAN J., LIEMANT A. et MATTHES K. Verallgemeinerung eines Satzes von Dobrušin. Math Nachrichten 47 (1970) 183–244, 50 (1971) 99–139 et 51 (1971) 149–188.MathSciNetzbMATHCrossRefGoogle Scholar
  60. DELLACHERIE C. Capacités et processus stochastiques. Springer 1972Google Scholar
  61. Intégrales stochastiques par rapport aux processus de Wiener et de Poisson. Sem. Proba. Strasbourg, Lect. Notes Math 381 (1974) 25–26 et 465 (1975) 494MathSciNetCrossRefGoogle Scholar
  62. DELLACHERIE C. et MEYER P.A. Probabilités et Potentiel, Hermann (1976)Google Scholar
  63. DISNEY R.L. et CHERRY W.P. Some topics in queuing network theory. Proc. Conf. Western Michigan Univ 1973. Lecture Notes in Economics 98, 23–44Google Scholar
  64. DOLEANS-DADE C. Quelques applications de la formule de changement de variables pour les semi-martingales. ZfW 16 (1970) 181–194zbMATHGoogle Scholar
  65. Existence and Unicity of stochastic integral equations. ZfW 36 (1976) 93–101MathSciNetzbMATHGoogle Scholar
  66. DOLEANS-DADE C. et MEYER P.A. Intégrales stochastiques par rapport aux martingales locales. Sém. de Proba, Strasbourg 4, Lecture Notes Springer 124 (1970) 77–107zbMATHGoogle Scholar
  67. DRISCOLL M.F. et WEISS N.A. Random translations of stationary point processes. J. Math. Anal. Appl. 48 (1974) 423–433MathSciNetzbMATHCrossRefGoogle Scholar
  68. ELKAROUI N. et LEPELTIER J.P. Représentation des processus ponctuels multivariés à l’aide de processus de Poisson. C.R. Acad. Sci. Paris A (1975)Google Scholar
  69. ELLIOTT R.J. Stochastic integrals for martingales of a jump process. Report Hull Univ.Google Scholar
  70. Martingales of a jump process with partially accessible jump times. Report Hull Univ.Google Scholar
  71. Levy systems and absolutely continuous changes of measures for a jump process. Report Hull Univ.Google Scholar
  72. Levy functionals and jump process martingales. Report Hull Univ.Google Scholar
  73. Innovation projections of a jump process and local martingales. Report Hull Univ.Google Scholar
  74. FELLER W. An introduction to probability and its applications. Vol. 1 and 2. WileyGoogle Scholar
  75. FICHTNER K.H. Charakterisierung Poissonscher zufülliger Punktfolgen und infinitesimale Verdünnungsschemata. Math. Nachr 68 (1975) 93–104MathSciNetzbMATHCrossRefGoogle Scholar
  76. FIEGER W. Zwer Verallgemeinerungen der Palmschen Formeln. Trans. 3nd Prague Conf (1964), 107–122Google Scholar
  77. Eine für beliebige Call-Prozesse geltende Verallgemernerung der Palmschen Formeln. Math. Scan 16 (1965) 121–147MathSciNetzbMATHGoogle Scholar
  78. Die Anzahl der γ-niveau Kreuzungspunkte von stochastischen Prozessen ZfW 18 (1971) 227–260MathSciNetzbMATHGoogle Scholar
  79. FISCHER L. A survey of the math theory of multi-dimensional point processes. Stochastic point processes, PAW Lewis ed. Wiley (1972) 468–513Google Scholar
  80. FORTET R. Sur les répartitions ponctuelles aléatoires. Ann IHP 4 (1968) 99–112MathSciNetzbMATHGoogle Scholar
  81. Définition et lois de probabilité des répartitions ponctuelles aléatoires. Zastosowania Matematyki 10 (1969) 57–73MathSciNetzbMATHGoogle Scholar
  82. FORTET R. et KAMBOUZIA M. Lois de probabilité des répartitions ponctuelles markoviennes et des répartitions ponctuelles cumulatives. CR. Acad. Sci. 268 (1969) 644–5MathSciNetzbMATHGoogle Scholar
  83. Recouvrement par un ensemble aléatoire. CR. Acad. Sci. 281 (1975) 397–8MathSciNetzbMATHGoogle Scholar
  84. Ensembles aléatoires induits par une répartition ponctuelle aléatoire CR. Acad. Sci. 280 (1975) 1447–50MathSciNetzbMATHGoogle Scholar
  85. FRANKEN P. Approximation durch Poissonsche Prozesse. Math Nachr 26 (1963) 101–114MathSciNetzbMATHCrossRefGoogle Scholar
  86. FRANKEN P., LIEMANT A. et MATTHES K. Stationäre zufällige Puntkfolgen I–III. J.Ber Deutsch Math Verein 65 (1963) 66–79, 66 (1964) 106–118 et 67 (1965) 183–202.zbMATHGoogle Scholar
  87. FRIEDMAN N.A. Introduction to Ergodic theory. Van Nostrand (1970)Google Scholar
  88. FRISCH H.L. et HAMMERSLEY J.M. Percolation processes and related topics. J. Soc. Ind. Appl. Math II (1963) 894–918Google Scholar
  89. FUJISAKI M., KALLIANPUR G. et KURITA H. Stochastic differential equations for the non-linear filtering problem Osaka J. Math 9 (1972) 19–40MathSciNetzbMATHGoogle Scholar
  90. FURSTENBERG H. et TZKONI I. Spherical functions and integral geometry. J. Israel Math 10 (1971) 327–338MathSciNetzbMATHCrossRefGoogle Scholar
  91. GEMAN D. Horizontal-window conditioning and the zeros of stationary processesGoogle Scholar
  92. On the variance of the number of zeros of a stationary Gaussian process. Ann. Math. Stat.Google Scholar
  93. GEMAN D. et HOROWITZ J. Remarks on Palm measures. Ann IHP 9 (1973) 215–232MathSciNetzbMATHGoogle Scholar
  94. Random shifts which preserve measure. Proc AMS 49 (1975) 143–150MathSciNetzbMATHCrossRefGoogle Scholar
  95. Polar sets and Palm measures in the theory of flows. Trans AMS 208 (1975) 141–159MathSciNetzbMATHCrossRefGoogle Scholar
  96. Time conditionning of random processesGoogle Scholar
  97. Transformation of flows by discrete random measures. Indiana J. Math 24 (1975) 291–306MathSciNetzbMATHCrossRefGoogle Scholar
  98. GIGER et HADWIGER Uber Treffzahlwahrscheinlickkeiten in Eikörperfeld. ZfW 10 (1968) 329–334MathSciNetzbMATHGoogle Scholar
  99. GIRSANOV I. On transforming a certain class of stochastic processes by absolutely continnous substitution of measures. Teor. Veroj i Prim. 5 (1960) 285–301zbMATHGoogle Scholar
  100. GNEDENKO B.V. et KOVALENKO I.N. Introduction to queuing theory. Nauka, Moscou (1966). Trad. anglaise Jesuralem (1968)Google Scholar
  101. HINCIN A Ya (ou KHINTCHINE) On Poisson streams of random events. Teor. Veroj. 1 (1956) 320–7; Th. Proba. 1 (1956) 291–7Google Scholar
  102. HOFFMAN-JORGENSEN J. Markov sets. Math. Scand. 24 (1969) 145–166MathSciNetGoogle Scholar
  103. ISHAM V. On a point process with independent locations. J. Appl. Proba. 12 (1975) 435–446MathSciNetzbMATHCrossRefGoogle Scholar
  104. ITO K. Poisson point processes attached to Markov processes. Proc. 6th Berkeley Symp (1972) III, 225–239MathSciNetzbMATHGoogle Scholar
  105. JACOD J. Two dependent Poisson processes whose sum is still a Poisson process. J. Appl. Proba 12 (1974) 1–12MathSciNetGoogle Scholar
  106. Multivariate point processes: predictable projection, Radon-Nikodym derivatives, representation of martingales. Z.f.W. 31 (1975) 235–253MathSciNetzbMATHCrossRefGoogle Scholar
  107. Un théorème de représentation pour les martingales discontinues. Z.f.W. 34 (1976) 225–244MathSciNetzbMATHCrossRefGoogle Scholar
  108. JACOD J. et MEMIN J. Caractéristiques locales et conditions de continuité pour les semimartingales. Z.f.W. 35 (1976) 1–37MathSciNetzbMATHCrossRefGoogle Scholar
  109. Un théorème de représentation des martingales pour les ensembles régénératifs. Sem. Proba. Strasbourg X. Lecture Notes Springer 511 (1976) 24–39MathSciNetzbMATHGoogle Scholar
  110. JAGERS P. On the weak convergence of superpositions of point processes. Z.f.W. 22 (1972) 1–7MathSciNetzbMATHCrossRefGoogle Scholar
  111. On Palm probabilities. Z.f.W. 26 (1973) 17–32MathSciNetzbMATHCrossRefGoogle Scholar
  112. Aspects of random measures and point processes. Adv. Proba. 3, ed. Ney. M. Dekker (1974) 179–239MathSciNetzbMATHGoogle Scholar
  113. Convergence of general branching processes and functionals thereof J. Appl. Proba. 11 (1974) 471–8MathSciNetzbMATHCrossRefGoogle Scholar
  114. JAGERS P. et LINDVALL T. Thinning and rare events in point processes. Z.f.W. 28 (1974) 89–98 et 29 (1974) 272MathSciNetzbMATHCrossRefGoogle Scholar
  115. JIŘINA M. Branching process with measure-valued states. Trans. 3rd Prague Conf. (1964) 333–357Google Scholar
  116. KABANOV I. Représentation comme intégrales stochastiques des fonctionnelles d’un Wiener ou d’un Poisson. Teor. Veraj. Prim 18 (1973) 376–380MathSciNetGoogle Scholar
  117. KABANOV I., LIPSER R. et SHIRYAEV A. Martingale methods in the theory of point processes. Proc. Steklov Inst. (1975) 269–354Google Scholar
  118. KAC M. et STEPIAN D. large excursions of Gaussian processes. Ann. Math. Stat. 30 (1959) 1215–1228MathSciNetzbMATHCrossRefGoogle Scholar
  119. KAILATH T. et SEGALL A. Radon-Nikodym derivatives with respect to measures induced by discontinuous independent increment processes. Ann. Proba 3 (1975) 449–464MathSciNetzbMATHCrossRefGoogle Scholar
  120. KALLENBERG O. Characterization and convergence of random measures and point processes. ZfW 27 (1973) 9–21MathSciNetzbMATHGoogle Scholar
  121. Canonical representations and convergence criteria for processes with interchangeable increments. ZfW 27 (1973) 23–36MathSciNetzbMATHGoogle Scholar
  122. Extremality of Poisson and sample processes. Stoch. Prob. Appli. 2 (1974) 73–83MathSciNetzbMATHCrossRefGoogle Scholar
  123. On symmetrically distributed random measures. Trans. AMS 202 (1975) 105–121MathSciNetzbMATHCrossRefGoogle Scholar
  124. Limits of compound and thinned point processes. J. Appl. Prob. 12 (1975) 269–278MathSciNetzbMATHCrossRefGoogle Scholar
  125. KENDALL D.G. Stochastic processes occuring in the theory of queues and their analysis by the method of the imbedded Markov chains. Ann. Math. Stat. 24 (1953) 338–354MathSciNetzbMATHCrossRefGoogle Scholar
  126. Foundations of a theory of random sets. Stochastic geometry. Harding et Kendall, ed. Wiley (1974) 322–376Google Scholar
  127. KERSTAN J. et MATTHES K. Verallgemernerungeines Satzes von Sliwnjak. Revue Romaine Math Pures et appliquées 9 (1964) 811–829MathSciNetzbMATHGoogle Scholar
  128. Ergodische unbegrenzt teilbare stationäre zufällige Punktfolgen. Trans. 4th Prague Conf (1967) 399–415Google Scholar
  129. KERSTAN J. MATTHES K. et MECKE J. Unbegrenzt teilbare Punktprozesse. Akademie Verlag, Berlin (1974)zbMATHGoogle Scholar
  130. KIEFER J. et WOLFOWITZ J. On the theory of queues with many servers. Trans. AMS 78 (1955) 1–18MathSciNetzbMATHCrossRefGoogle Scholar
  131. On the characteristics of the general queuing process with applications to random walks. Ann. Math. Stat 27 (1956) 147–161MathSciNetzbMATHCrossRefGoogle Scholar
  132. KINGMAN J.F.C. On doubly stochastic Poisson processes. Proc Cambridge Phil Soc 60 (1964) 923–930MathSciNetzbMATHCrossRefGoogle Scholar
  133. The stochastic theory of regenerative events. ZfW 2 (1964) 180–224MathSciNetzbMATHGoogle Scholar
  134. Completely random measures. Pacific J. Math 21 (1967) 59–78MathSciNetzbMATHCrossRefGoogle Scholar
  135. Markov population processes. J. Appl. Proba. 6 (1969) 1–18MathSciNetzbMATHCrossRefGoogle Scholar
  136. Regenerative Phenomena. Wiley 1972Google Scholar
  137. KOSTEN L. Stochastic theory of service systems. Pergamon Press, Oxford (1973)zbMATHGoogle Scholar
  138. KRENGEL U. Darstellungen von Strömungen I, II. Math. Annalen 176 (1968) 181–190MathSciNetzbMATHCrossRefGoogle Scholar
  139. KRICKEBERG K. The Cox processes. Symp. Math. Roma 9 (1972) 151–167MathSciNetzbMATHGoogle Scholar
  140. Theory of hyperplane processes. Conf. Stoch. point processes I.B.M. Wiley (1972) 514–521Google Scholar
  141. Moments of point processes. Lecture Notes in Mathematics, Springer 246 (1973) 70–101MathSciNetCrossRefGoogle Scholar
  142. Invariance properties of the correlation measure of line processes. Stochastic geometry, ed. Kendall; Wiley (1974) 76–88Google Scholar
  143. KRYLOV N.V. et YUSKENI A.A. Markov random sets. Terr. Verojatn Prim. 9 (1964) 738–743MathSciNetGoogle Scholar
  144. KUMMER G. et MATTHES K. Verallgemeinesung eines Satzes von Sliwnyak. Rev. Roumaine Math Pures Appl. 15 (1970) 845–870 et 1631–1642MathSciNetzbMATHGoogle Scholar
  145. KUNITA H. Asymptotic behavior of the non-linear filtering errors of Markov processes. J. Multiv. Anal. 1 (1971) 365–393MathSciNetzbMATHCrossRefGoogle Scholar
  146. Cours de 3ème cycle, Paris VI (1974)Google Scholar
  147. KUNITA H. et WATANABE S. Square integrable martingales. Nagoya J. Math 30 (1967) 209–245MathSciNetzbMATHGoogle Scholar
  148. KURTZ T.G. Limit theorem for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Proba. 8 (1971) 344–356MathSciNetzbMATHCrossRefGoogle Scholar
  149. Point processes and completely monotone set functions. ZfW 31 (1974) 57–67MathSciNetzbMATHGoogle Scholar
  150. LAWRANCE A.J. Selective interaction of a point process and a renewal process. J. Appl. Proba 7 (1970) 359–372, 7 (1970) 483–9, 8 (1971) 170–183, 8 (1971) 731–744MathSciNetzbMATHCrossRefGoogle Scholar
  151. Stationary series of univariate events. Stochastic point processes. P. Lewis, Ed. Wiley (1972) 199–256Google Scholar
  152. LAZARO J. de Sam et MEYER P.A. Méthodes des martingales et théorie des flots. ZfW 18 (1971) 116–140zbMATHGoogle Scholar
  153. Questions de théorie des flots. Sém. Proba Strasbourg (1972–3)Google Scholar
  154. LEADBETTER M.R. On three basic results in the theory of stationary point processes. Proc. AMS 19 (1968) 115–7MathSciNetzbMATHCrossRefGoogle Scholar
  155. On basic results of point process theory. Proc. 6th Berkeley Symp 3 (1972) 449–462MathSciNetzbMATHGoogle Scholar
  156. Point processes generated by level crossings. Conf. Stoch. point processes I.B.M. Wiley (1972) 436–467Google Scholar
  157. LECAM L. An approximation theorem for the Poisson binomial distribution Pacific J. Math 10 (1960) 1181–1197MathSciNetGoogle Scholar
  158. LEE P.M. Infinitely divisible stochastic processes. ZfW 7 (1967) 147–160MathSciNetzbMATHGoogle Scholar
  159. Some examples of infinitely divisible point processes. Studia Sc. Math Hung 3 (1968) 219–224MathSciNetzbMATHGoogle Scholar
  160. LEGALL Les systèmes avec ou sans attente et les processus stochastiques. Dunod 1962Google Scholar
  161. LEONOV V.P. Applications of the characteristic functional and semi-invariants to the ergodic theory of stationary processes. Dokl Akad Nauk SSSR (1960) 523–6Google Scholar
  162. LEWIS P.A.W. Asymptotic properties and equilibrium conditions for branching Poisson processes. J. Appl. Proba 6 (1969) 355–371MathSciNetzbMATHCrossRefGoogle Scholar
  163. Asymptotic properties of branching renewal processesGoogle Scholar
  164. LIND D.A. Locally compact measure preserving flows. Trans Amer Math Soc (1973)Google Scholar
  165. LITTLE D.V. A third note on recent research in general critical probability. Adv. Appl. Proba 6 (1974) 103–130MathSciNetzbMATHCrossRefGoogle Scholar
  166. MACCHI O. Etude d’un processus ponctuel par ses multicoīncidences. C.R. Acad. Sci. Paris 268 (1969) 1616, 271 (1970) 660MathSciNetzbMATHGoogle Scholar
  167. The coīncidence approach to stochastic point processes. Adv. Appl. Proba 7 (1975), 83–122MathSciNetzbMATHCrossRefGoogle Scholar
  168. MAISONNEUVE B. Temps local d’un fermé droit aléatoire: cas d’un ensemble régénératif. C.R. Acad. Sci. Paris A 270 (1970) 1526–8MathSciNetzbMATHGoogle Scholar
  169. Un résultat de renouvellement pour des processus de Markov généraux C.R. Acad. Sci. Paris A 272 (1971) 964–6MathSciNetzbMATHGoogle Scholar
  170. Ensembles régénératifs, temps locaux et subordinateurs. Sém. Proba. Strasbourg, Lecture Notes Mathematics Springer 191 (1971)Google Scholar
  171. MAISONNEUVE B. et MORANDO Ph. Temps locaux pour les ensembles régénératifs. CR. Acad. Sci. Paris A 269 (1969) 523–5MathSciNetzbMATHGoogle Scholar
  172. MARTINS-NETTO et WONG E. A martingale approach to queuing theory (1975)Google Scholar
  173. MARUYAMA Transformation of flows. J. Math. Soc. Japan 18 (1966) 303–330.MathSciNetzbMATHCrossRefGoogle Scholar
  174. MATHERON G. Ensembles aléatoires, ensembles semi-markoviens et polyèdres poissoniens. Adv. Appl. Proba. 4 (1972) 508–541MathSciNetzbMATHCrossRefGoogle Scholar
  175. Un théorème d’unicité pour les hyperplans poissoniens. J. Appl. Proba 11 (1974) 184–9MathSciNetzbMATHCrossRefGoogle Scholar
  176. Hyperplans poissoniens et compacts de Steiner. Adv. Appl. Proba 6 (1974) 563–579MathSciNetzbMATHCrossRefGoogle Scholar
  177. Random sets and integral geometry. Wiley 1975Google Scholar
  178. MATTHES K. Stationäre zufüllige Punktfolgen. Jahresbericht der DMV 66 (1963) 66–79MathSciNetzbMATHGoogle Scholar
  179. Zur theorie der Bedienungs prozesse. Trans. 3rd Prague Conf (1964) 513–518Google Scholar
  180. Eine charackterisierung der kontinuierlichen unbegrenzt teilbaren Verteinlungsgesetze zufälliger Punktfolgen. Revue Roumaine Math.Pures et appliquées 4 (1969) 1121–1127MathSciNetzbMATHGoogle Scholar
  181. Infinitely divisible point processes. Stochastic point processes, P. Lewis Ed. Wiley (1972) 384–404Google Scholar
  182. Mc FADDEN J.A. On the lengths of intervals in a stationary point processes. J.R. Stat. Soc. B 24 (1962) 364–382MathSciNetGoogle Scholar
  183. Mc FADDEN J. et WEISSBLUM W. Higher order properties of a stationary point process. J.R. Stat. Soc. B 25 (1963) 413–431MathSciNetzbMATHGoogle Scholar
  184. MECKE J. Stationäre zufällige Masse auf lokalkompakten Abelschen Gruppen. ZfW 9 (1967) 36–58MathSciNetzbMATHGoogle Scholar
  185. Eine kharakteristischeEigenschaft der doppelt stochastischen Poissonschen Prozesse. ZfW 11 (1968) 74–81MathSciNetzbMATHGoogle Scholar
  186. Invariance Eigenschaften allgemeiner Palmscher Masse. Math. NachrichtenGoogle Scholar
  187. Dac Erlangsche Modell mit abhängigen Bedienungszeiten. Math. op. Forsch u Stat 3 (1972) 453–464MathSciNetzbMATHCrossRefGoogle Scholar
  188. Stationäre Verteilungen für das Erlangsche Modell. Math. NachrGoogle Scholar
  189. A result on the output of stationary Erlang processesGoogle Scholar
  190. A characterization of mixed Poisson processes. J. Appl. Proba.Google Scholar
  191. MEYER P.A. Processus de Poisson ponctuels suivant Ito. Sém. Proba. Strasbourg V. Lecture Notes Springer 191 (1971)Google Scholar
  192. Ensembles aléatoires markoviens homogènes. Sém. Proba. Strasbourg 8, Lectures Notes Springer 381 (1974) 172–261zbMATHGoogle Scholar
  193. Un cours sur les intégrales stochastiques. Sém. Proba. Strasbourg X, Lecture Notes Springer 511 (1975) 245–400Google Scholar
  194. Generation of σ-fields by step processes. Sem Strasbourg X. Lecture Notes Springer 511 (1976) 118–124MathSciNetGoogle Scholar
  195. MILES R.E. Poisson flats in euclidean space. Adv. Appl. Proba. 1 (1969) 211–237 3 (1971) 1–43MathSciNetzbMATHGoogle Scholar
  196. A synopsis of Poisson flats in euclidean spaces. Izv. Akad Nauk Armianskoi SSR 3 (1970) 263–285MathSciNetzbMATHGoogle Scholar
  197. MILNE R.K. Simple proofs of some theorems on point processes. Ann. Math Stat 42 (1971) 368–372MathSciNetzbMATHCrossRefGoogle Scholar
  198. MILNE R.K. et WESTCOTT M. Further results for Gauss-Poisson processes. Adv. Appl. Proba. 4 (1972) 151–176MathSciNetzbMATHCrossRefGoogle Scholar
  199. MOGYÓRODI J. On the rarefaction of renewal processes. Studia Sci. Math. Hung 7 (1972) 285–305 et 8 (1973) 21–38, 193–209MathSciNetzbMATHGoogle Scholar
  200. MÖNCH G. Verallgeneinerung eines Satzes von A. Reyni. Studia Sci Math Hung 6 (1971) 81–90Google Scholar
  201. MORAN P.A.P. A non-markovian quasi-Poisson process. Studia Sci. Math Hung 2 (1967) 425–429MathSciNetzbMATHGoogle Scholar
  202. A second note on recent research in geometrical probability. Adv. Appl. Proba 1 (1969) 73–89MathSciNetzbMATHCrossRefGoogle Scholar
  203. MORI T. Ergodicity and identifiability for random translations of stationary point processes. J. Appl. Proba. 12 (1975) 734–743MathSciNetzbMATHCrossRefGoogle Scholar
  204. MOYAL J.E. The general theory of stochastic population processes. Acta Math 108 (1962) 1–31MathSciNetzbMATHCrossRefGoogle Scholar
  205. Multiplicative population processes. J. Appl. Proba. 1 (1964) 267–283MathSciNetzbMATHCrossRefGoogle Scholar
  206. Particle populations and number operators in quantum theory Adv. Appl. Proba. (1972) 39–80Google Scholar
  207. NEVEU J. Une généralisation des processus à accroissements positifs indépendants. Abh. Math. Sem. Hamburg 25 (1961) 36–61MathSciNetzbMATHCrossRefGoogle Scholar
  208. Bases mathématiques des Probabilités. Masson 1964 et 1970Google Scholar
  209. Sur la structure des processus ponctuels stationnaires. CR. Acad. Sci. Paris A 267 (1968) 561–4MathSciNetzbMATHGoogle Scholar
  210. Martingales à temps discret. Masson 1972Google Scholar
  211. Sur les measures de Palm de deux processus ponctuels stationnaires. ZfW 34 (1976) 189–203MathSciNetzbMATHGoogle Scholar
  212. NEWMAN D.S. A new family of point processes which are characterized by their second moment properties. J. Appl. Proba. 7 (1970) 338–358MathSciNetzbMATHCrossRefGoogle Scholar
  213. NEY P. Convergence of a random distribution function associated with a branching process. J. Math. Anal. Appl. 12 (1965) 316–327MathSciNetzbMATHCrossRefGoogle Scholar
  214. NGUYEN Xuan Xanh et ZESSIN H. Punktprozesse mit Wechselwirkung. ZfW 37 (1976) 91–126MathSciNetzbMATHGoogle Scholar
  215. OAKES D. Synchronous and asynchronous distributions for Poisson cluster processes. J. Roy Stat. Soc. B 37 (1975) 238–247MathSciNetzbMATHGoogle Scholar
  216. The markovian self exciting process. J. Appl. Proba. Appl. 12 (1975) 69–77MathSciNetzbMATHCrossRefGoogle Scholar
  217. Random overlopping intervals. A generalization of Erlang’s loss formula. Ann. Proba. 4 (1976) 940–6MathSciNetzbMATHCrossRefGoogle Scholar
  218. OREY S. Radon-Nikodym derivatives of probability measures: martingale methods. Dpt of Math. Educ., Tokyo Univ. Educ. (1974) 1–38Google Scholar
  219. PALM C. Intensitätschwankungen in Fernsprechverkehr. Ericsson Technics 44 (1943) 1–189MathSciNetGoogle Scholar
  220. PAPANGELOU The Ambrose-Kakutani theorem and the Poisson process. Lecture Notes Springer 160 (1970)Google Scholar
  221. Integrability of expected increments of point processes and a related change of scale. Trans. AMS 165 (1972) 483–506MathSciNetzbMATHCrossRefGoogle Scholar
  222. Summary of some results on point and line processes. Stochastic point processes, etc ... I.B.M. Conf. Wiley (1972) 522–532Google Scholar
  223. Stochastic geometry. Trans. AMS 165 (1972) 483–506MathSciNetCrossRefGoogle Scholar
  224. On the Palm probabilities of processes of points and processes of lines. Stochastic geometry, ed. Kendall. Wiley (1974) 114–147Google Scholar
  225. The conditional intensity of general point processes and an application to line processes. ZfW 28 (1974) 207–226MathSciNetzbMATHGoogle Scholar
  226. PARTHASARATHY K.R. Probability measures on metric spaces. Academic Press, New York 1967zbMATHCrossRefGoogle Scholar
  227. POLLACZEK F. Problèmes stochastiques posés par le phénomène de formation d’une queue d’attente à un guichet et par des phénomènes apparentés Mém. Sc. Math Paris (1957)Google Scholar
  228. PORT S.C. Equilibrium systems of recurrent Markov processes. J. Math. Anal Appl. 12 (1965) 555–569MathSciNetzbMATHCrossRefGoogle Scholar
  229. Equilibrium processes Trans Amer Math Soc 124 (1966) 168–184MathSciNetCrossRefGoogle Scholar
  230. Limit theorems involving capacities. J. Math. Mech 15 (1966) 805–832MathSciNetzbMATHGoogle Scholar
  231. PORT S.C. et STONE C.J. Infinite particle systems. Trans. Amer. Math. Soc. 178 (1973) 307–340MathSciNetzbMATHCrossRefGoogle Scholar
  232. PYKE R. Markov renenval processes. Ann. Math. Stat. 32 (1961) 1231–1259MathSciNetzbMATHCrossRefGoogle Scholar
  233. RÅDE L. Limit theorems for thinning of renewal point processes. J. Appl. Proba 9 (1972) 847–851MathSciNetzbMATHCrossRefGoogle Scholar
  234. RENYI A. Remarks on the Poisson process. Studia Sci Math Hung 2 (1967) 119–123MathSciNetzbMATHGoogle Scholar
  235. RENSHAW A. Interconnected population processes. J. Appl. Proba. 10 (1973) 1–14MathSciNetzbMATHCrossRefGoogle Scholar
  236. RIORDAN J. Stochastic service systems. Wiley (1962)Google Scholar
  237. RIPLEY R.D. Locally finite random sets; foundations for point process theory. Ann. Proba. 4 (1976) 983–994MathSciNetzbMATHCrossRefGoogle Scholar
  238. The foundations of stochastic geometry. Ann. Proba. 4 (1976) 995–998MathSciNetzbMATHCrossRefGoogle Scholar
  239. On stationary and superposition of point processes. Ann. Proba. 4 (1976) 999–1005MathSciNetzbMATHCrossRefGoogle Scholar
  240. ROOT D. A counterxample in renewal theory. Ann. Math. Stat. 42 (1971) 1763–6MathSciNetzbMATHCrossRefGoogle Scholar
  241. RUBEN H. et REED W.J. A more general form of a theorem of Crofton. J. Appl. Proba. 10 (1973) 479–482MathSciNetzbMATHCrossRefGoogle Scholar
  242. RUBIN I. Regular point processes and their detection. IEEE IT 18 (1972) 5MathSciNetzbMATHCrossRefGoogle Scholar
  243. Regular point processes and their information processing. IEEE IT 20 (1974) 617–624zbMATHCrossRefGoogle Scholar
  244. RUDEMO M. Point processes generated by transition of Markov chains. Adv. Appl. Proba 5 (1973) 262–286MathSciNetzbMATHCrossRefGoogle Scholar
  245. Multivariate point processes generated by transitions of Markov chains. J. Appl. Proba (1973)Google Scholar
  246. Some non stationary point processes with stationary forward recurrence time distribution. J. Appl. Proba 12 (1975) 167–9MathSciNetzbMATHCrossRefGoogle Scholar
  247. RYLL NARDZEWSKI C Remarks on processes of calls. Proc 4th Berkeley Symp II (1961) 455–465MathSciNetzbMATHGoogle Scholar
  248. SAMUELS S.M. A characterization of the Poisson process. J. Appl. Proba 11 (1974) 72–85MathSciNetzbMATHCrossRefGoogle Scholar
  249. SERFLING R.J. Research in point processes, with applications to reliability and biometry. Proc. Conf. Florida. SIAM (1974) 109–127Google Scholar
  250. SERFOZO R.F. Conditional Poisson processes. J. Appl. Proba 9 (1972) 288–302MathSciNetzbMATHCrossRefGoogle Scholar
  251. Semi-stationary processes. ZfW 23 (1972) 125–132MathSciNetzbMATHGoogle Scholar
  252. Compositions, inverses and thinnings of random measuresGoogle Scholar
  253. SERFOZO R. et STIDHAM S. Semi-stationary clearing processesGoogle Scholar
  254. SKOROHDD A. Studies in the theory of random processes. Trad. du russe. Addison-Wesley (1965)Google Scholar
  255. SLIVNYAK Some properties of stationary streams of homogeneous random events. Teor. Veraj. Prim. 7 (1962) 347–352MathSciNetGoogle Scholar
  256. SNYDER D. Filtering and detection for doubly stochastic Poisson processes. IEEE Trans IT 18 (1972) 97–102MathSciNetzbMATHGoogle Scholar
  257. Smoothing for doubly stochastic Poisson processes. IEEE Trans IT 18 (1972) 558–562MathSciNetzbMATHCrossRefGoogle Scholar
  258. Information processing for observed jump processes. Info et Control 22 (1973)Google Scholar
  259. SRINIVASAN S.K. Stochastic point processes and their applications. Griffin’s Stat. Monographs and Courses 34 (1974)Google Scholar
  260. STONE C.J. On a theorem of Dobrusin. Ann Math Stat 39 (1968) 1391–1401zbMATHCrossRefGoogle Scholar
  261. An supper bound for the renewal function. Ann Math Stat 43 (1972) 2050–2052zbMATHCrossRefGoogle Scholar
  262. STÖRMER H. Zur Uberlagerung von Erneuerungs prozessen. ZfW 13 (1969) 9–24zbMATHGoogle Scholar
  263. STRAUSS D.J. A model for clustering. Biometrika 62 (1975) 467–475MathSciNetzbMATHCrossRefGoogle Scholar
  264. SYSKI R. Introduction to Congestion theory in telephone systems. Oliver et Boyd, London (1962)Google Scholar
  265. SZASZ D. On the general branching process with continuous time-parameter. Studia Sci. Math Hung 2 (1967) 227–247MathSciNetzbMATHGoogle Scholar
  266. Once more on the Poisson process. Studia Sci. Math. Hung 5 (1970) 441–4MathSciNetzbMATHGoogle Scholar
  267. On the convergence of sums of point processes with integer marks Conf. on Stochastic point processes, etc. I.B.M. Wiley (1972) 607–615Google Scholar
  268. TAKACS L. Introduction to the theory of queues. Oxford Univ. Press (1962)Google Scholar
  269. Sojourn time problems. Ann. Proba. 2 (1974) 420–431MathSciNetzbMATHCrossRefGoogle Scholar
  270. TENHOOPEN M. and REUVER HA Selective interaction of two independent recurrent processes. J. Appl. Proba 2 (1965) 286–292MathSciNetzbMATHCrossRefGoogle Scholar
  271. Interaction between two independent recurrent time series. Info et Control 10 (1967) 149–158zbMATHCrossRefGoogle Scholar
  272. THEDEEN T. A note on the Poisson tendency in traffic distribution. Annals Math Stat 35 (1964) 1823–4MathSciNetzbMATHCrossRefGoogle Scholar
  273. Convergence and invariance questions for point systems in R1 under random motion. Arkiv för Math 7 (1967) 211–239MathSciNetzbMATHCrossRefGoogle Scholar
  274. TOMKO J. On the rarefaction of multivariate point processes. European Meeting of Statisticians, Budapest (1972) 843–860Google Scholar
  275. TOTOKI H. Time changes of flows. Me Fac. Sci.Kyushu Univ. A 20 (1966) 27–55MathSciNetzbMATHGoogle Scholar
  276. TORTRAT A. Sur les mesures aléatoires dans les groupes non abéliens. Ann IHP 5 (1969) 31–47MathSciNetzbMATHGoogle Scholar
  277. VAN SCHUPPEN J. et WONG E. Translation of local martingales under a change of law. Ann. Proba. 2 (1974) 879–888zbMATHCrossRefGoogle Scholar
  278. VARAYIA P. The martingale theory of jump processes. IEEE AC 20 (1975) 34–42MathSciNetCrossRefGoogle Scholar
  279. VERE-JONES D. Stochastic models for earthquake occurence. JR Stat Soc B 32 (1970) 1–62MathSciNetzbMATHGoogle Scholar
  280. A renewal equation for point processes with Markov dependent intervals. Math. Nachr 68 (1975) 133–9MathSciNetzbMATHCrossRefGoogle Scholar
  281. VON WALDENFELS W. Charakteristische funktionale zufalliger Masse ZfW 10 (1968) 279–283MathSciNetzbMATHGoogle Scholar
  282. Taylor expansion of a Poisson measure. Sem Strasbourg. Lecture Notes Springer 381 (1974) 344–354Google Scholar
  283. WATANABE S. On discontinuous additive functionals and Levy measures of a Markov process. Japanese J. Math 34 (1964) 53–70MathSciNetzbMATHGoogle Scholar
  284. WEISS N.A. Infinite particle systems of recurrent random walks. J. Math Anal. Appl. 41 (1973) 563–574MathSciNetzbMATHCrossRefGoogle Scholar
  285. Limit theorems for infinite particle systems. ZfWGoogle Scholar
  286. WESTCOTT M. On existence and mixing results for cluster point processes. J.R. Stat. Soc. B 33 (1971) 290–300MathSciNetzbMATHGoogle Scholar
  287. The probability generating functional. J. Austr. Math. Soc. 13 (1972) 448–466MathSciNetzbMATHCrossRefGoogle Scholar
  288. Results in the asymptotic and equilibrum theory of Poisson cluster processes. J. Appl. Proba. 10 (1973) 807–823MathSciNetzbMATHCrossRefGoogle Scholar
  289. Some remarks on a property of the Poisson process. Sankhya A 35 (1973) 29–34MathSciNetzbMATHGoogle Scholar
  290. Simple proof of a result on thinned point process. Ann. Proba. 4 (1976) 89–90MathSciNetzbMATHCrossRefGoogle Scholar
  291. WHITT W. The continuity of queues. Adv. Appl. Proba. 6 (1974) 175–183MathSciNetzbMATHCrossRefGoogle Scholar
  292. Representation and convergence of point processes on the line. Ann. Proba. 2 (1974)Google Scholar
  293. WISMIEWSKI T.K.M. Bivariate stationary point processes. Adv. Appl. Proba. 4 (1972) 296–317CrossRefGoogle Scholar
  294. WONG E. Recent progresses in stochastic processes; a survey. IEEE Trans. IT 19 (1973) 262–275zbMATHCrossRefGoogle Scholar
  295. WOLFF R.W. et WRIGHTSON C.W. An extension of Erlang’s loss formula. J. Appl. Proba. 13 (1976) 628–632MathSciNetzbMATHCrossRefGoogle Scholar
  296. YASHIN Filtering of jump processes. Artomatika i Telemektanica 5 (1970)Google Scholar
  297. YLVISAKER N.D. The expected number of zeros of a stationary Gaussian process. Ann. Math. Stat. 36 (1965) 1043–6MathSciNetzbMATHCrossRefGoogle Scholar
  298. YOR M. Sur les intégrales stochastiques optionnelles et une suite remarquable de formules exponentielles. Sém. Proba. Strasbourg, Lecture Notes Springer (1975)Google Scholar
  299. Représentation des martingales de carré intégrable relative aux processus de Wiener et de Poisson à n paramètres. C.R. Acad. Sci. Paris 281 (1975) 111–113zbMATHGoogle Scholar
  300. YOEURP CH. Décomposition de martingales locales et formules exponentielles. Sém. Proba. Strasbourg, Lecture Notes Springer.Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • J. Neveu

There are no affiliations available

Personalised recommendations