Hamiltoniens périodiques sur les variétés symplectiques compactes de dimension 4

  • Michèle Audin
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1416)

Mots-clefs

Application moment Opérations hamiltoniennes Plombages Variétés toriques 

A.M.S. Subject Classification (1988)

57R13 53C57 14L32 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. [1]
    M. Atiyah, Convexity and commuting hamiltonians, Bull. London Math. Soc. 23 (1982), 1–15.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    M. Atiyah, Angular momentum, convex polyhedra and algebraic geometry, Proceedings Edinburgh Math. Soc. 26 (1983), 121–138.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    F. Bonahon, L. Siebenmann, The classification of Seifert fibred 3-orbifolds, Low dimensional topology, R. Fenn, London Math. Soc. Lecture Notes Series, Cambridge University Press, (1985), 19–83.Google Scholar
  4. [4]
    J.L. Brylinski, Éventails et variétés toriques, Séminaire sur les singularités des surfaces, Springer Lect. Notes in Math. 777 (1980), 248–288.Google Scholar
  5. [5]
    V.I. Danilov, La géométrie des variétés toriques, Uspekhi Mat. Nauk 33 (1978), 85–134.MathSciNetGoogle Scholar
  6. [6]
    T. Delzant, Hamiltoniens périodiques et image convexe de l’application moment, Bull. Soc. Math. France (à paraître).Google Scholar
  7. [7]
    J. J. Duistermaat, G. J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982), 259–269.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    R. Fintushel, Classification of circle actions on 4-manifolds, Trans. Amer. Math. Soc. 242 (1978), 377–390.MathSciNetMATHGoogle Scholar
  9. [9]
    T. Frankel, Fixed points on Kähler manifolds, Ann. of Math. 70 (1959), 1–8.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    V. Guillemin, S. Sternberg, Convexity properties of the moment mapping, I et II, Invent. Math. 67 (1982), 491–513, 77 (1984), 533–546.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    P. Iglesias, Classification des SO(3)-variétés symplectiques de dimension 4, Centre de physique théorique, Marseille, 1984.Google Scholar
  12. [12]
    J. Jurkiewicz, Torus embeddings, polyhedra, k*-actions and homology, Dissertationes Mathematicae 236 (1985).Google Scholar
  13. [13]
    D. McDuff, Examples of simply-connected symplectic non-kälerian manifolds, J. Differential Geometry 20 (1984), 267–277.MathSciNetMATHGoogle Scholar
  14. [14]
    D. McDuff, The moment map for circle actions on symplectic manifolds, preprint, 1988.Google Scholar
  15. [15]
    T. Oda, Convex Bodies and algebraic geometry, Ergebnisse der Mathematik, Springer, 1988.Google Scholar
  16. [16]
    P. Orlik, Seifert manifolds, Lecture Notes in Mathematics 291, Springer, Berlin, Heidelberg, New York, 1972.MATHGoogle Scholar
  17. [17]
    P. Orlik, P. Wagreich, Algebraic surfaces with k*-action, Acta Math. 138 (1977), 43–81.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    R. von Randow, Zur Topologie von dreidimensionalen Baummanigfaltigkeiten, Bonner Math. Schriften 14 (1962).Google Scholar
  19. [19]
    K. Ahara, A. Hattori, A classification of 4 dimensional symplectic S 1 manifolds admitting moment map, 1988.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Michèle Audin
    • 1
  1. 1.MathématiquesUniversité Louis PasteurStrasbourg cedex

Personalised recommendations