Applications of superperfect forcing and its relatives

  • Andreas Blass
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1401)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Balcar, J. Pelant, and P. Simon, The space of ultrafilters on N covered by nowhere dense sets, Fund. Math. 110 (1980) 11–24.MathSciNetMATHGoogle Scholar
  2. 2.
    J. Baumgartner, Iterated forcing, in Surveys in Set Theory, ed. A.R.D. Mathias, London Math. Soc. Lecture Notes 87, 1983, pp. 1–59.Google Scholar
  3. 3.
    D. Bellamy, A non-metric indecomposable continuum, Duke Math. J. 38 (1971) 15–20.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    A. Blass, Ultrafilters related to Hindman’s finite unions theorem and its extensions, in Logic and Combinatorics, ed. S. Simpson, Contemporary Mathematics 65 (1987) 89–124.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    _____, Near coherence of filters, I: Cofinal equivalence of models of arithmetic, Notre Dame J. Formal Logic 27 (1986) 579–591.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    ___, Near coherence of filters, II: Applications to operator ideals, the Stone-Cech remainder of a half-line, order ideals of sequences, and slenderness of groups, Trans. Amer. Math. Soc. 300 (1987) 557–581.MathSciNetMATHGoogle Scholar
  7. 7.
    ___ and C. Laflamme, Consistency results about filters and the number of inequivalent growth types, to appear in J. Symbolic Logic.Google Scholar
  8. 8.
    ___ and S. Shelah, Ultrafilters with small generating sets, to appear.Google Scholar
  9. 9.
    ___, ___, There may be simple P 1 and P 2 points and the Rudin-Keisler order may be downward directed, Ann. Pure Appl. Logic 83 (1987) 213–243.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    ___, ___, Near coherence of filters, III: A simplified consistency proof, to appear.Google Scholar
  11. 11.
    ___ and G. Weiss, A characterization and sum decomposition of operator ideals, Trans. Amer. Math. Soc. 246 (1978) 407–417.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    A. Brown, C. Pearcy, and N. Salinas, Ideals of compact operators on Hilbert space, Michigan Math. J. 19 (1971) 373–384.MathSciNetMATHGoogle Scholar
  13. 13.
    E. van Douwen, The integers and topology, in Handbook of Set-Theroretic Topology, ed. K. Kunen and J. Vaughan, North-Holland, 1984, pp. 111–167.Google Scholar
  14. 14.
    R. Göbel and B. Wald, Wachstumstypen und schlanke Gruppen, Symposia Math. 23 (1979) 201–239.MathSciNetMATHGoogle Scholar
  15. 15.
    ___, ___, Martin’s axiom implies the existence of certain slender groups, Math. Z. 172 (1980) 107–121.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    J. Ketonen, On the existence of P-points in the Stone-Cech compactification of integers, Fund. Math. 92 (1976) 91–94.MathSciNetMATHGoogle Scholar
  17. 17.
    P. Matet, Some filters of partitions, to appear.Google Scholar
  18. 18.
    A. Miller, Rational perfect set forcing, in Axiomatic Set Theory, ed. J. Baumgartner, D.A. Martin, and S. Shelah, Contemporary Mathematics 31 (1964) 143–159.MathSciNetCrossRefGoogle Scholar
  19. 19.
    J. Midoduszewski, On composants of βR-R, Proc. Conf. Topology and Measure, I (Zinnowitz), ed. J. Flachsmeyer, Z. Frolik, and F. Terpe, Ernst-Moritz-Arndt-Universität zu Greifwald, 1978, 257–283.Google Scholar
  20. 20.
    _____, An approach to βR\R, in Topology, ed. A. Császár, Colloq. Math. Soc. János Bolyai 23 (1980) 853–854.Google Scholar
  21. 21.
    M.E. Rudin, Composants and βN, Proc. Washington State Univ. Conf. General Toplogy 1970, pp. 117–119.Google Scholar
  22. 22.
    W. Rudin, Homogeneity problems in the theory of Cech compactifications, Duke Math. J. 23 (1956) 409–419.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    S. Shelah, Proper Forcing, Lecture Notes in Mathematics 940, Springer-Verlag 1982.Google Scholar
  24. 24.
    R.C. Solomon, Families of sets and functions, Czechoslovak Math. J. 27 (1977) 556–559.MathSciNetMATHGoogle Scholar
  25. 25.
    E. Specker, Additive Gruppen von Folgen ganzer Zahlen, Portugal. Math. 9 (1950) 131–140.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Andreas Blass
    • 1
  1. 1.Mathematics DepartmentUniversity of MichiganAnn Arbor

Personalised recommendations