The arithmetic mean of the divisors of an integer

  • Paul T. Bateman
  • Paul Erdös
  • Carl Pomerance
  • E. G. Straus
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 899)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.T. Bateman, The distribution of values of the Euler function, Acta Arith. 21 (1972), 329–345.MathSciNetMATHGoogle Scholar
  2. 2.
    Hubert Delange, Généralisation du theorème de Ikehara, Ann. Sci. École Norm. Sup. (3) 71 (1954), 213–242.MATHGoogle Scholar
  3. 3.
    Harold G. Diamond, Interpolation of the Dirichlet divisor problem, Acta Arithmetica 13 (1967), 151–168.MathSciNetMATHGoogle Scholar
  4. 4.
    Robert D. Dixon, On a generalized divisor problem, J. Indian Math. Soc. (N.S.) 28 (1964), 187–196.MathSciNetMATHGoogle Scholar
  5. 5.
    P. Erdös and S. S. Wagstaff, Jr., The fractional parts of the Bernoulli numbers, Illinois J. Math. 24 (1980), 104–112.MathSciNetMATHGoogle Scholar
  6. 6.
    G. Halász, Remarks to my paper “On the distribution of additive and the mean value of multiplicative arithmetic functions”, Acta Math. Acad. Sci. Hungar. 23 (1972), 425–432.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    H. Halberstam and H.-E. Richert, Sieve Methods, London, Academic Press, 1974.MATHGoogle Scholar
  8. 8.
    G.H. Hardy, Ramanujan, Cambridge, The University Press, 1940, particularly §4.4–4.8.MATHGoogle Scholar
  9. 9.
    G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers London, Oxford University Press, 1960.MATHGoogle Scholar
  10. 10.
    H.-J. Kanold, Über das harmonische Mittel der Teiler einer natürlichen Zahl, Math. Ann. 133 (1957), 371–374.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Alfred Kienast, Über die asymptotische Darstellung der summatorischen Funktion von Dirichletreihen mit positiven Koeffizienten, Math. Zeit. 45 (1939), 554–558.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    J.P. Kubilius, Probabilistic Methods in the Theory of Numbers, Translations of Mathematical Monographs, Vol. 11, American Math. Soc., Providence 1964.MATHGoogle Scholar
  13. 13.
    Edmund Landau, Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zussamensetzung erforderlichen Quadrate, Archiv der Mathematik und Physik (Ser. 3) 13 (1908), 305–312.Google Scholar
  14. 14.
    Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Leipzig, Teubner, 1909, particularly §§ 176–183.MATHGoogle Scholar
  15. 15.
    K.K. Norton, On the number of restricted prime factors of an integer. I, Illinois J. Math. 20 (1976), 681–705.MathSciNetMATHGoogle Scholar
  16. 16.
    O. Ore, On the averages of the divisors of a number, Amer. Math. Monthly 55 (1948), 615–619.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    C. Pomerance, On the distribution of amicable numbers, J. reine angew. Math. 293/4 (1977), 217–222.MathSciNetMATHGoogle Scholar
  18. 18.
    C. Pomerance, Problem 6144, Amer. Math. Monthly 84 (1977), 299–300.MathSciNetCrossRefGoogle Scholar
  19. 19.
    R.A. Rankin, The difference between consecutive prime numbers, J. London Math. Soc. 13 (1938), 242–247.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Atle Selberg, Note on a paper by L. G. Sathe, J. Indian Math. Soc. (N.S.) 18 (1954), 83–87.MathSciNetMATHGoogle Scholar
  21. 21.
    H.N. Shapiro, Distribution functions of additive arithmetic functions, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 426–430.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    G.K. Stanley, Two assertions made by Ramanujan, J. London Math. Soc. 3 (1928), 232–237 and 4 (1929), 32.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    D.V. Widder, The Laplace Transform, Princeton University Press, 1941.Google Scholar
  24. 24.
    B.M. Wilson, Proofs of some formulae enunciated by Ramanujan, Proc. London Math. Soc. (2) 21 (1923), 235–255. *** DIRECT SUPPORT *** A00J4373 00006MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Paul T. Bateman
    • 1
    • 2
    • 3
    • 4
  • Paul Erdös
    • 1
    • 2
    • 3
    • 4
  • Carl Pomerance
    • 1
    • 2
    • 3
    • 4
  • E. G. Straus
    • 1
    • 2
    • 3
    • 4
  1. 1.University of IllinoisUrbana
  2. 2.Hungarian Academy of ScienceBudapestHungary
  3. 3.University of GeorgiaAthens
  4. 4.University of California at Los AngelesLos AngelesUSA

Personalised recommendations