Chapter 5 Ramanujan's second notebook

  • Bruce C. Berndt
  • B. M. Wilson
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 899)


Decimal Place Eulerian Number Asymptotic Series Bernoulli Number Stirling Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Abramowitz and I.A. Stegun, editors, Handbook of mathematical functions, Dover, New York, 1965.Google Scholar
  2. 2.
    G.E. Andrews, An incredible formula of Ramanujan, Australian Math. Soc. Gazette 6 (1979), 80–89.MathSciNetzbMATHGoogle Scholar
  3. 3.
    P. Appell, Sur une classe de fonctions analogues aux fonctions Eulériennes, Math. Ann. 19 (1882), 84–102.MathSciNetCrossRefGoogle Scholar
  4. 4.
    R. Ayoub, An introduction to the analytic theory of numbers, American Mathematical Society, Providence, 1963.zbMATHGoogle Scholar
  5. 5.
    R. Ayoub, Euler and the zeta function, Amer. Math. Monthly 81 (1974), 1067–1086.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    B.C. Berndt, Elementary evaluation of ξ(2n), Math. Mag. 48 (1975), 148–154.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    B.C. Berndt, P.T. Joshi, and B.M. Wilson, Chapter 2 of Ramanujan's second notebook, Glasgow Math. J. (to appear).Google Scholar
  8. 8.
    B.C. Berndt and L. Schoenfeld, Periodic analogues of the Euler-Maclaurin and Poisson summation formulas with applications to number theory, Acta Arith. 28 (1975), 23–68.MathSciNetzbMATHGoogle Scholar
  9. 9.
    T.B.N. Brodén, Bemerkungen über sogenannte finite Integration, Arkiv för Mat. Astr. och Fys. (Stockholm) 7 (1911), 34pp.Google Scholar
  10. 10.
    T.B.N. Brodén, Einige Anwendungen diskontinuierlicher Integrale auf Fragen der Differenzenrechnung, Acta Univ. Lund. (2) 8 (1912), 17pp.Google Scholar
  11. 11.
    T.J. I'A. Bromwich, An introduction to the theory of infinite series, second ed., Macmillan, London, 1926.zbMATHGoogle Scholar
  12. 12.
    L. Carlitz, Eulerian numbers and polynomials, Math. Mag. 33 (1959), 247–260.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    L. Carlitz, Eulerian numbers and operators, Coll. Math. 24 (1973), 175–200.MathSciNetzbMATHGoogle Scholar
  14. 14.
    L. Carlitz, Some remarks on the Eulerian function, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 611, 1978, 79–91.MathSciNetzbMATHGoogle Scholar
  15. 15.
    L. Carlitz, D.C. Kurtz, R. Scoville, and O.P. Stackelberg, Asymptotic properties of Eulerian numbers, Z. Wahrscheinlichkeitstheorie 23 (1972), 47–54.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    L. Carlitz and J. Riordan, Congruences for Eulerian numbers, Duke Math. J. 20 (1953), 339–343.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    L. Carlitz and R. Scoville, Generalized Eulerian numbers: combinatorial applications, J. Reine Angew. Math. 265 (1974), 110–137 Corrigendum 288 (1976), 218–219.MathSciNetzbMATHGoogle Scholar
  18. 18.
    L. Carlitz and R. Scoville, Eulerian numbers and operators, Fibonacci Quart. 13 (1975), 71–83.MathSciNetzbMATHGoogle Scholar
  19. 19.
    L. Euler, Institutiones calculi differentialis, Acad. Imperialis Sci., Petrograd, 1755.Google Scholar
  20. 20.
    F.G. Frobenius, Über die Bernoullischen Zahlen und die Eulerschen Polynome, Sitz. d. K. Preuss. Akad. Wiss. Berlin 1910, 809–847.Google Scholar
  21. 21.
    F.G. Frobenius, Gesammelte Abhandlungen, Band III, Springer-Verlag, Berlin, 1968.CrossRefGoogle Scholar
  22. 22.
    E. Landau, Primzahlen, Chelsea, New York, 1953.zbMATHGoogle Scholar
  23. 23.
    A.M. Legendre, Traité des fonctions elliptiques et des intégrales Eulériennes, tome II, Huzard-Courcier, Paris, 1826.Google Scholar
  24. 24.
    N. Nielsen, Traité élémentaire des nombres de Bernoulli, Gauthier-Villars, Paris, 1923.zbMATHGoogle Scholar
  25. 25.
    N.E. Nörlund, IIC7. Neure Untersuchungen über Differenzengleichungen, Encyklopädie der mathematischen Wissenschaften, Band 2, Teil 3, B.G. Teubner, Leipzig, 1923, pp. 675–721.Google Scholar
  26. 26.
    N.E. Nörlund, Vorlesungen über Differenzenrechnung, Chelsea, New York, 1954.Google Scholar
  27. 27.
    E. Picard, Sur une classe de transcendantes nouvelles, Acta Math. 18 (1894), 133–154.MathSciNetCrossRefGoogle Scholar
  28. 28.
    S. Ramanujan, Some properties of Bernoulli's numbers, J. Indian Math. Soc. 3 (1911), 219–234.zbMATHGoogle Scholar
  29. 29.
    S. Ramanujan, Irregular numbers, J. Indian Math. Soc. 5 (1913), 105–106.zbMATHGoogle Scholar
  30. 30.
    S. Ramanujan, Collected papers, Chelsea, New York, 1962.Google Scholar
  31. 31.
    S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.zbMATHGoogle Scholar
  32. 32.
    J. Riordan, An introduction to combinatorial analysis, John Wiley, New York, 1958.zbMATHGoogle Scholar
  33. 33.
    J. Riordan, Combinatorial identities, John Wiley, New York, 1968.zbMATHGoogle Scholar
  34. 34.
    T. J. Stieltjes, Table des valeurs des sommes \(S_k = \sum\limits_1^\infty {n^{ - k} }\), Acta Math. 10 (1887), 299–302.MathSciNetCrossRefGoogle Scholar
  35. 35.
    J. V. Uspensky and M. A. Heaslet, Elementary number theory, McGraw-Hill, New York, 1939.zbMATHGoogle Scholar
  36. 36.
    S. S. Wagstaff, Jr., The irregular primes to 125000, Math. Comp. 32 (1978), 583–591.MathSciNetzbMATHGoogle Scholar
  37. 37.
    S. S. Wagstaff, Jr., Ramanujan's paper on Bernoulli numbers, submitted for publication.Google Scholar
  38. 38.
    J. Worpitzky, Studien über die Bernoullischen und Eulerschen Zahlen, J. Reine Angew. Math. 94 (1883), 203–232.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Bruce C. Berndt
  • B. M. Wilson

There are no affiliations available

Personalised recommendations