A pencil of K3- surfaces related to Apéry's recurrence for ζ(3) and Fermi surfaces for potential zero

  • C. Peters
  • J. Steinstra
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1399)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Be]
    F. Beukers: Another congruence for the Apéry numbers, Journ. of Number Theory, 25, 1987, 201–210.MathSciNetCrossRefMATHGoogle Scholar
  2. [Be2]
    F. Beukers: Irrationality proofs using modular forms. Journées Arithm. Besançon (1985), Astérisque, 147, 1987, 271–283, 345.MathSciNetMATHGoogle Scholar
  3. [B-P]
    F. Beukers, C. Peters: A family of K3-surfaces and ζ(3), Journ. f. reine u. angew. Math., 351, 1984, 42–54.MathSciNetMATHGoogle Scholar
  4. [G-K-T]
    D. Gieseker, H. Knörrer, E. Trubowitz: Fermi curves and density of states, forthcoming.Google Scholar
  5. [P]
    C. Peters: Monodromy and Picard-Fuchs equations for families of K3-surfaces and elliptic curves, Ann. Scient. Éc. Norm. Sup. 4.e ser. 19, 1986, 583–607.MathSciNetMATHGoogle Scholar
  6. [Po]
    A.J. van der Poorten: A proof that Euler missed.. Apéy's proof of the irrationality of ζ(3), Math. Intell., 1, 1979, 195–203.CrossRefMATHGoogle Scholar
  7. [R]
    H. Rademacher, Topics in analytic number theory, Springer Verlag 1973.Google Scholar
  8. [S-B]
    J. Stienstra, F. Beukers: On the Picard-Fuchs equation and the formal Brauer group of certain elliptic K3-surfaces, Math. Ann., 271, 1985, 269–304.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • C. Peters
    • 1
    • 2
  • J. Steinstra
    • 1
    • 2
  1. 1.Math. Inst. Rijksuniversiteit LeidenLeidenThe Netherlands
  2. 2.Math. Inst. Rijksuniversiteit UtrechtUtrechtThe Netherlands

Personalised recommendations