Kinetic analysis of functional images: The case for a practical approach to performance prediction

  • F. Munz
  • T. Ludwig
  • S. Ziegler
  • P. Bartenstein
  • M. Schwaiger
  • A. Bode
IV Applications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1615)


We present the first parallel medical application for the analysis of dynamic positron emission tomography (PET) images together with a practical performance model. The parallel application may improve the diagnosis for a patient (e. g. in epilepsy surgery) because it enables the fast computation of parametric images on a pixed level as opposed to the traditionally used region of interest (ROI) approach which is applied to determine an average parametric value for a particular anatomic region of the brain. We derive the performance model from the application context and show its relation to abstract machine models. We demonstrate the accuracy of the model to predict the runtime of the application on a network of workstations and use it to determine an optimal value in the message frequency-size relationship.


functional imaging kinetic modeling practical performance prediction network of workstations logP BSP PPM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexandrov, A., Ionescu, M., Schauser, K., and Scheiman, C. LogGP: Incorporating Long Messages into the LogP Model. Proc. of the 7th Annual ACM Symp. on Parallel Algorithms and Architectures (1995), 95–105.Google Scholar
  2. 2.
    Arabnia, H. High-Performance Computing and Applications in Image Processing and Computer Vision. In High Performance Computing (1997), C. Polychronopoulos, K. Joe, K. Araki, and M. Amamiya, Eds., vol. 1336 of Lecture Notes in Computer Science, Springer-Verlag, p. 72.Google Scholar
  3. 3.
    Cherry, S. R., and Phelps, M. E. Imaging Brain Function with Positron Emission Tomography. In Brain Mapping: The Methods, A. Toga and. Maziotta, Eds. Academic Press, 1996, ch. 8, pp. 191–221.Google Scholar
  4. 4.
    Clark, D., Jacobson, V., Romkey, J., and Salwen, H. An Analysis of TCP Processing Overhead. IEEE Communications Magazine (June 1989), 23–29.Google Scholar
  5. 5.
    Culler, D., Karpand, R., Patterson, D., Sahay, A., Schausser, K., Santos, E., Subramonian, R., and von Eicken, T. LogP: Towards a Realistic Model of Parallel Computation. In Proc. ACM Symp. on Principles and Practice of Parallel Programming (May 1993).Google Scholar
  6. 6.
    Cunningham, V. J., and Jones, T. Spectral Analysis of Dynamic PET Studies. Journal of Cerebral Blood Flow and Metabolism 13 (1993), 15–23.Google Scholar
  7. 7.
    Fortune, S., and Wyllie, J. Parallelism in Random Access Machines. In Proceedings of the Tenth ACM Symposium Thery of Computing (May 1978).Google Scholar
  8. 8.
    Hockney, R. Performance Parameters and Bechmarking of Supercomputers. Parallel Computing 17 (1991), 1111–1130.CrossRefGoogle Scholar
  9. 9.
    Hockney, R.: The Communication Challenge for MPPs: Intel Paragon and Meiko CS-2. Parallel Computing 20 (1994), 389–309.CrossRefGoogle Scholar
  10. 10.
    Hwang, K., and Xu, Z.Scalable Parallel Computing. Mc Graw-Hill, 1998.Google Scholar
  11. 11.
    Lawson, C. L., and Hanson, R. J.Solving Least Squares Problems. Prentice Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs, NJ, 1974.zbMATHGoogle Scholar
  12. 12.
    Munz, F., Stephan, T., Maier, U., Ludwig, T., Bode, A., Ziegler, S., Nekolla, S., Bartenstein, P., and Schwaiger, M. NOW Based Parallel Reconstruction of Functional Images. In Proceedings of the First Merged International Parallel Processing Symposium and Symposium on Parallel and Distributed Computing (Los Alamitos, California, USA, April 1998), B. Werner, Ed., IEEE Computer Society Technical Committee on Parallel Processing, pp. 210–214.Google Scholar
  13. 13.
    Rugina, R., and Schauser, K. E. Predicting the Running Times of Parallel Programs by Simulation. In Proceedings of the 12th International Parallel Processing Symposium and 9th Symposium on Parallel and Distributed Processing, Orlando, FL (April 1998).Google Scholar
  14. 14.
    Singh, J. P., Rothberg, E., and Gupta, A. Modelling Communication in Parallel Algorithms: A Fruitful Interaction between Theory and Systems? Proc. of the 10th Annual ACM Symposium on Parallel Algorithms and Architectures (1994).Google Scholar
  15. 15.
    Valiant, L. A bridging model for parallel computation. Comm. of ACM 33, 8 (1990), 103–111.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • F. Munz
    • 1
    • 2
  • T. Ludwig
    • 2
  • S. Ziegler
    • 1
  • P. Bartenstein
    • 3
  • M. Schwaiger
    • 1
  • A. Bode
    • 2
  1. 1.Nuklearmedizinische Klinik und Poliklinik des Klinikums rechts der IsarGermany
  2. 2.Lehrstuhl für Rechnertechnik und RechnerorganisationTechnische Universität München (TUM)MünchenGermany
  3. 3.Klinik und Poliklinik für NuklearmedizinJohannes Gutenberg-Universität MainzGermany

Personalised recommendations