Conceptual Knowledge Discovery in Databases using formal concept analysis methods

  • Gerd Stumme
  • Rudolf Wille
  • Uta Wille
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1510)


In this paper we discuss Conceptual Knowledge Discovery in Databases (CKDD) as it is developing in the field of Conceptual Knowledge Processing (cf. [29],[30]). Conceptual Knowledge Processing is based on the mathematical theory of Formal Concept Analysis which has become a successful theory for data analysis during the last 18 years. This approach relies on the pragmatic philosophy of Ch.S. Peirce [15] who claims that we can only analyze and argue within restricted contexts where we always rely on pre-knowledge and common sense. The development of Formal Concept Analysis led to the software system TOSCANA, which is presented as a CKDD tool in this paper. TOSCANA is a flexible navigation tool that allows dynamic browsing through and zooming into the data. It supports the exploration of large databases by visualizing conceptual aspects inherent to the data. We want to clarify that CKDD can be understood as a human-centered approach of Knowledge Discovery in Databases. The actual discussion about human-centered Knowledge Discovery is therefore briefly summarized in Section 1.


Knowledge Discovery Conceptual Knowledge Concept Lattice Formal Context Formal Concept Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baader, F., Computing a Minimal Representation of the Subsumption Lattice of all Conjunctions of Concepts Defined in a Terminology. In: Proc. of KRUSE ’95. August 11–13, 1995, 168–178Google Scholar
  2. 2.
    Berg, H., Terminologische Begriffslogik. Diplomarbeit, FB4, TU Darmstadt, 1997.Google Scholar
  3. 3.
    Brachman, R.J., Anand, T., The Process of Knowledge Discovery in Databases. In [7].Google Scholar
  4. 4.
    Brachman, R.J. et al., Integrated Support for Data Archaeology. Int. J. of Intelligent and Cooperative Information Systems, 2(2), 1993, 159–185.CrossRefGoogle Scholar
  5. 5.
    Ganter, B., Wille, R., Formale Begriffsanalyse: Mathematische Grundlagen. Berlin-Heidelberg: Springer-Verlag, 1996 (English translation to appear).Google Scholar
  6. 6.
    Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., From Data Mining to Knowledge Discovery: An Overview. In [7].Google Scholar
  7. 7.
    Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R., Eds. Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, Cambridge 1996.Google Scholar
  8. 8.
    Grosskopf, A., Harras, G., Eine TOSCANA-Anwendung für Sprechaktverben des Deutschen. FB4-Preprint, TU Darmstadt 1998.Google Scholar
  9. 9.
    Kalix, E., Entwicklung von Regelungskonzepten für thermische Abfallbehandlungsanlagen. Diplomarbeit, FB13, TU Darmstadt, 1997.Google Scholar
  10. 10.
    Kaufmann, U., Begriffliche Analyse von Daten über Flugereignisse—Implementierung eines Erkundungs-und Analysesystems mit TOSCANA. TU Darmstadt, 1996.Google Scholar
  11. 11.
    Kohler-Koch, B., Vogt F., Normen und regelgeleitete internationale Kooperationen. FB4-Preprint 1632, TU Darmstadt, 1994.Google Scholar
  12. 12.
    Kollewe, W., Sander, C., Schmiede, R., Wille, R., TOSCANA als Instrument der der bibliothekarischen Sacherschließung. In: H. Havekost and H.J. Wätjen (eds.), Aufbau und Erschließung begrifflicher Datenbanken. (BIS)-Verlag, Oldenburg, 1995, 95–114.Google Scholar
  13. 13.
    Kollewe, W., Skorsky, M., Vogt, F., Wille, R., TOSCANA—ein Werkzeug zur begrifflichen Analyse und Erkundung von Daten. In: R. Wille and M. Zickwolff (eds.), Begriffliche Wissensverarbeitung—Grundfragen und Aufgaben. B.I.-Wissenschaftsverlag, Mannheim, 1994, 267–288.Google Scholar
  14. 14.
    Mackensen, K., Wille, U., Qualitative Text Analysis Supported by Conceptual Data Systems. Preprint, ZUMA, Mannheim, 1997.Google Scholar
  15. 15.
    Peirce, Ch. S., Collected Papers. Havard University Press, Cambridge, 1931-35.Google Scholar
  16. 16.
    Prediger, S., Logical Scaling in Formal Concept Analysis. In: D. Lukose, H. Delugach, M. Keeler, L. Searle, J. F. Sowa (eds.): Conceptual Structures: Fulfilling Peirce’s Dream. LNAI 1257, Springer, Berlin-Heidelberg, 1997, 332–341.CrossRefGoogle Scholar
  17. 17.
    Rock, T., Wille, R., Ein TOSCANA-System zur Literatursuche. In: G. Stumme and R. Wille (eds.): Begriffliche Wissensverarbeitung: Methoden und Anwendungen. Springer, Berlin-Heidelberg (to appear).Google Scholar
  18. 18.
    Roth-Hintz, M., Mieth, M, Wetter, T., Strahringer, S., Groh, B., Wille, R., Investigating SNOMED by Formal Concept Analysis. Submitted to: Artificial Intelligence in Medicine.Google Scholar
  19. 19.
    Selfridge, P. D., Srivastava, D., Wilson, L. O., IDEA: Interactive Data Exploration and Analysis. SIGMOD ’96, Montreal, Canada 1996Google Scholar
  20. 20.
    Scheich, P., Skorsky, M., Vogt, F., Wachter, C., Wille, R., Conceptual Data Systems. In: O. Opitz, B. Lausen, R. Klar (eds.): Information and Classification. Springer, Berlin-Heidelberg, 1993, 72–84.Google Scholar
  21. 21.
    Stumme, G., The Concept Classification of a Terminology Extended by Conjunction and Disjunction. In: N. Foo, R. Goebel (eds.): PRICAI’96: Topics in Artificial Intelligence. LNAI 1114, Springer, Berlin-Heidelberg, 1996, 121–131Google Scholar
  22. 22.
    Stumme, G., Conceptual Information Systems and Conceptual On-Line Analytical Processing. Proc. of FODO ’98. Springer, Heidelberg 1988 (submitted)Google Scholar
  23. 23.
    Stumme, G., Wolff, K.E., Computing in Conceptual Data Systems with Relational Structures. In: Proc. of KRUSE ’97. Vancouver, August 11–13, 1997, 206–219Google Scholar
  24. 24.
    Uthurusamy, R., From Data Mining to Knowledge Discovery: Current Challenges and Future Directions. In [7].Google Scholar
  25. 25.
    Vogel, N., Ein begriffliches Erkundungssystem für Rohrleitungen TU Darmstadt, 1995.Google Scholar
  26. 26.
    Vogt, F., Wille, R., TOSCANA—A Graphical Tool for Analyzing and Exploring Data. In R. Tamassia, I. G. Tollis (eds.): Graph Drawing ’94. LNCS 894. Springer, Berlin-Heidelberg, 1995, 226–233.Google Scholar
  27. 27.
    Wille, R., Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts. In I. Rival (ed.): Ordered Sets. Boston-Dordrecht: Reidel, 1982, 445–470.Google Scholar
  28. 28.
    Wille, R., Concept Lattices and Conceptual Knowledge Systems. Computers & Mathematics with Applications, 23, 1992, 493–515.zbMATHCrossRefGoogle Scholar
  29. 29.
    Wille, R. Begriffliche Datensysteme als Werkzeug der Wissenskommunikation. In H. H. Zimmermann, H.-D. Luckhardt, A. Schulz (eds.): Mensch und Maschine—Informationelle Schnittstellen der Kommunikation. Univ.-Verl. Konstanz, 1992, 63–73.Google Scholar
  30. 30.
    Wille, R., Conceptual Landscapes of Knowledge: A Pragmatic Paradigm for Knowledge Processing. In: Proc. of KRUSE ’97. Vancouver, August 11–13, 1997, 2–13Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Gerd Stumme
    • 1
  • Rudolf Wille
    • 1
  • Uta Wille
    • 2
  1. 1.Fachbereich MathematikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Zurich Research LaboratoryIBM Research DivisionRüschlikonSwitzerland

Personalised recommendations