Advertisement

Integrals of motion and quantum groups

  • Boris Feigin
  • Edward Frenkel
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1620)

Keywords

Poisson Bracket Spectral Sequence Vertex Operator Singular Vector Poisson Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ablowitz, D. Kaup, A. Newell, H. Segur, Stud. Appl. Math. 53 (1974) 249–315MathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Adler, Inv. Math. 50 (1979) 219–248CrossRefGoogle Scholar
  3. 3.
    O. Babelon, D. Bernard, Comm. Math. Phys. 149 (1992) 279–306MathSciNetCrossRefGoogle Scholar
  4. 4.
    O. Babelon, D. Bernard, Int. J. Math. Phys. A8 (1993) 507–543MathSciNetGoogle Scholar
  5. 5.
    O. Babelon, L. Bonora, Phys. Lett. B244 (1990) 220MathSciNetCrossRefGoogle Scholar
  6. 6.
    F.A. Bais, P. Bouwknegt, K. Schoutens and M. Surridge, Nucl. Phys. B304 (1988) 348–370MathSciNetCrossRefGoogle Scholar
  7. 7.
    J. Balog, L. Feher, L. O'Raifeartaigh, P. Forgacs, A. Wipf, Ann. Phys. (NY) 203 (1990) 76MathSciNetCrossRefGoogle Scholar
  8. 8.
    A. Belavin, A. Polyakov, A. Zamolodchikov, Nucl. Phys. B241 (1984) 333–380MathSciNetCrossRefGoogle Scholar
  9. 9.
    D. Bernard, G. Felder, Comm. Math. Phys. 127 (1990) 145MathSciNetCrossRefGoogle Scholar
  10. 10.
    J.N. Bernstein, I.M. Gelfand, S.I. Gelfand, Funct. Anal. Appl. 5 (1971) 1–8MathSciNetCrossRefGoogle Scholar
  11. 11.
    J.N. Bernstein, I.M. Gelfand, S.I. Gelfand, in Representations of Lie groups, ed. I. Gelfand, 21–64, Wiley, New York 1975Google Scholar
  12. 12.
    M. Bershadsky, H. Ooguri, Comm. Math. Phys. 126 (1989) 49MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Bilal, J.-L. Gervais, Phys. Lett. 206B (1988) 412; Nucl. Phys. B314 (1989) 646; B318 (1989) 579MathSciNetCrossRefGoogle Scholar
  14. 14.
    R. Borcherds, Proc. Natl. Acad. Sci. USA, 83 (1986) 3068–3071MathSciNetCrossRefGoogle Scholar
  15. 15.
    R. Bott, L.W. Tu, Differential forms in algebraic topology, Springer, New York 1982CrossRefzbMATHGoogle Scholar
  16. 16.
    P. Bouwknegt, in Infinite-dimensional Lie algebras and groups, ed. V. Kac, Adv. Ser. in Math. Phys. 7, 527–555, World Scientific, Singapore 1989Google Scholar
  17. 17.
    P. Bouwknegt, J. McCarthy, K. Pilch, Comm. Math. Phys. 131 (1990) 125–155MathSciNetCrossRefGoogle Scholar
  18. 18.
    P. Bouwknegt, J. McCarthy, K. Pilch, Progr. Theor. Phys. Suppl. 102 (1990) 67MathSciNetCrossRefGoogle Scholar
  19. 19.
    P. Bouwknegt, J. McCarthy, K. Pilch, in Strings and Symmetries, eds. N. Berkovits, e.a., 407–422. World Scientific, 1992Google Scholar
  20. 20.
    P. Bouwknegt, K. Schoutens, Phys. Reports 223 (1993) 183–276MathSciNetCrossRefGoogle Scholar
  21. 21.
    P. Bowcock, P. Goddard, Nucl. Phys. B305 (1988) 685MathSciNetCrossRefGoogle Scholar
  22. 22.
    P. Bowcock, G.M.T. Watts, Nucl. Phys. B379 (1992) 63–95MathSciNetCrossRefGoogle Scholar
  23. 23.
    H.W. Braden, E. Corrigan, P.E. Dorey, R. Sasaki, Nucl. Phys. B338 (1990) 698MathSciNetCrossRefGoogle Scholar
  24. 24.
    P. Christe, G. Mussardo, Nucl. Phys. B330 (1990) 465–487MathSciNetCrossRefGoogle Scholar
  25. 25.
    J. de Boer, T. Tjin, Preprint THU-93/01, ITFA-02-93Google Scholar
  26. 26.
    C. De Concini, V. Kac, in Operator algebras, unitary representations, enveloping algebras, and invariant theory, eds. A. Connes e.a., Progress in Math. 92, 471–506, Birkhäuser 1990.Google Scholar
  27. 27.
    L.A. Dickey, Soliton Equations and Hamiltonian Systems, Adv. Ser. in Math. Phys. 12, World Scientific, Singapore, 1990zbMATHGoogle Scholar
  28. 28.
    P. Di Francesco, C. Itzykson, J.-B. Zuber, Comm. Math. Phys. 140 (1991) 543–567MathSciNetCrossRefGoogle Scholar
  29. 29.
    P. Di Francesco, P. Mathieu, Phys. Lett. B278 (1992) 79–84MathSciNetCrossRefGoogle Scholar
  30. 30.
    P. Di Francesco, P. Mathieu, D. Sénéchal, Mod. Phys. Lett. A7 (1992) 701CrossRefGoogle Scholar
  31. 31.
    V.G. Drinfeld, Sov. Math. Dokl. 32 (1985) 254Google Scholar
  32. 32.
    V.G. Drinfeld, V.V. Sokolov, Sov. Math. Dokl. 23 (1981) 457–462Google Scholar
  33. 33.
    V.G. Drinfeld, V.V. Sokolov, J. Sov. Math. 30 (1985) 1975–2035CrossRefGoogle Scholar
  34. 34.
    V.G. Drinfeld, Algebra i Analiz (Leningrad Math. J.) 1, N2 (1989) 30–46MathSciNetGoogle Scholar
  35. 35.
    T. Eguchi, S.-K. Yang, Phys. Lett. 224B (1989) 373MathSciNetCrossRefGoogle Scholar
  36. 36.
    T. Eguchi, S.-K. Yang, Phys. Lett. 235B (1989) 282MathSciNetGoogle Scholar
  37. 37.
    L.D. Faddeev, L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer, 1987Google Scholar
  38. 38.
    L.D. Faddeev, L.A. Takhtajan, in Lect. Notes in Phys. 246, 66. Springer, 1986Google Scholar
  39. 39.
    L.D. Faddeev, A. Volkov, Phys. Lett. 315B (1993) 311–318MathSciNetCrossRefGoogle Scholar
  40. 40.
    V. Fateev, S. Lukyanov, Int. J. of Mod. Phys. A3 (1988) 507MathSciNetCrossRefGoogle Scholar
  41. 41.
    V. Fateev, S. Lukyanov, Sov. J. Nucl. Phys. 49 (1989) 925MathSciNetGoogle Scholar
  42. 42.
    V. Fateev, S. Lukyanov, Kiev Preprints ITF-88-74R, ITF-88-75R, ITF-88-76R, 1988 (English translation: Sov. Sci. Rev. A Phys. 15 (1990) 1)Google Scholar
  43. 43.
    V. Fateev, A. Zamolodchikov, Nucl. Phys. B280 (1987) 644MathSciNetCrossRefGoogle Scholar
  44. 44.
    V. Fateev, A. Zamolodchikov, in Physics and Mathematics of Strings, Memorial Volume for Vadim Knizhnik, eds. L. Brink, D. Friedan, A.M. Polyakov, 245–270, World Scientific, 1990Google Scholar
  45. 45.
    B. Feigin, E. Frenkel, Phys. Lett. B246 (1990) 75–81MathSciNetCrossRefGoogle Scholar
  46. 46.
    B. Feigin, E. Frenkel, Lett. Math. Phys. 19 (1990) 307–317MathSciNetCrossRefGoogle Scholar
  47. 47.
    B. Feigin, E. Frenkel, Comm. Math. Phys. 128 (1990) 161–189MathSciNetCrossRefGoogle Scholar
  48. 48.
    B. Feigin, E. Frenkel, Int. J. Mod. Phys. A7, Supplement 1A (1992) 197–215CrossRefGoogle Scholar
  49. 49.
    B. Feigin, E. Frenkel, Duke Math. Journal 64, IMRN 6 (1991) 75–82MathSciNetGoogle Scholar
  50. 50.
    B. Feigin, E. Frenkel, Phys. Lett. B276 (1992) 79–86MathSciNetCrossRefGoogle Scholar
  51. 51.
    B. Feigin, E. Frenkel, Kac-Moody groups and integrability of soliton equations, Preprint RIMS-970, hep-th/9311171, to appear in Invent. Math.Google Scholar
  52. 52.
    B. Feigin, D. Fuchs, in Representations of Lie Groups and Related Topics, eds. A.M. Vershik and D.P. Zhelobenko, 465–554, Gordon and Breach, 1990Google Scholar
  53. 53.
    G. Felder, Nucl. Phys. B324 (1989) 548MathSciNetGoogle Scholar
  54. 54.
    G. Felder, C. Wieczerkowski, Comm. Math. Phys. 138 (1991) 583–605MathSciNetCrossRefGoogle Scholar
  55. 55.
    J.M. Figueroa-O'Farrill, Nucl. Phys. B343 (1990) 450MathSciNetCrossRefGoogle Scholar
  56. 56.
    E. Frenkel, Affine Kac-Moody algebras at the critical level and quantum Drinfeld-Sokolov reduction, Ph.D. Thesis, Harvard University, 1991Google Scholar
  57. 57.
    E. Frenkel, in “New Symmetry Principles in QFT”, eds. J. Fröhlich, e.a., 433–447, Plenum Press, 1992Google Scholar
  58. 58.
    E. Frenkel, V. Kac, A. Radul, W. Wang, W 1+∞ and W(gl N) with central charge N, Preprint hepth/9405121, to appear in Comm. Math. Phys.Google Scholar
  59. 59.
    E. Frenkel, V. Kac, M. Wakimoto, Comm. Math. Phys. 147, (1992) 295–328MathSciNetCrossRefGoogle Scholar
  60. 60.
    I. Frenkel, in Applications of Group Theory in Physics and Mathematical Physics, eds. M. Flato, P. Sally, G. Zuckerman, Lect. in Appl. Math. 21, 325–353. AMS, Providence, 1985Google Scholar
  61. 61.
    I. Frenkel and V. Kac, Invent. Math. 62 (1980), 23–66MathSciNetCrossRefGoogle Scholar
  62. 62.
    I. Frenkel, J. Lepowsky, A. Meurman, Vertex Operator Algebras and the Monster, Academic Press 1988Google Scholar
  63. 63.
    I. Frenkel, Y.-Z. Huang, J. Lepowsky, Memoirs of the AMS, 594 (1993)Google Scholar
  64. 64.
    I. Frenkel, Y. Zhu, Duke Math. Journal 66 (1992) 123–168MathSciNetCrossRefGoogle Scholar
  65. 65.
    P.G.O. Freund, T.R. Klassen, E. Melzer, Phys. Lett. B229 (1989) 243MathSciNetCrossRefGoogle Scholar
  66. 66.
    D.B. Fuchs, Cohomology of Infinite-dimensional Lie Algebras, Plenum 1988Google Scholar
  67. 67.
    C.S. Gardner, J. Math. Phys. 12 (1971) 1548–1551CrossRefGoogle Scholar
  68. 68.
    C.S. Gardner, J.M. Green, M.D. Kruskal, R.M. Miura, Phys. Rev. Lett. 19 (1967) 1095–1097CrossRefGoogle Scholar
  69. 69.
    I.M. Gelfand, L.A. Dikii, Russ. Math. Surv. 30, N5 (1975) 77–113MathSciNetCrossRefGoogle Scholar
  70. 70.
    I.M. Gelfand, L.A. Dikii, Funct. Anal. Appl. 10 (1976) 16–22CrossRefGoogle Scholar
  71. 71.
    I.M. Gelfand, L.A. Dikii, A family of Hamiltonian structures connected with integrable non-linear differential equations, Preprint IPM AN SSSR, Moscow, 1978Google Scholar
  72. 72.
    J.-L. Gervais, Phys. Lett. B160 (1985) 277MathSciNetCrossRefGoogle Scholar
  73. 73.
    J.-L. Gervais, Phys. Lett. B160 (1985) 279MathSciNetCrossRefGoogle Scholar
  74. 74.
    J.-L. Gervais, A. Neveu, Nucl. Phys. B224 (1983) 329MathSciNetCrossRefGoogle Scholar
  75. 75.
    P. Goddard, in Infinite-dimensional Lie algebras and groups ed. V. Kac, Adv. Ser. in Math. Phys. 7, 556–587, World Scientific, Singapore 1989.Google Scholar
  76. 76.
    A. Guichardet, Cohomologie des Groupes Topologiques et des Algebres de Lie, Cedic/Fernand Nathan, Paris 1980zbMATHGoogle Scholar
  77. 77.
    T. Hollowood, P. Mansfield, Phys. Lett. 226B (1989) 73MathSciNetCrossRefGoogle Scholar
  78. 78.
    M. Jimbo, Lett. Math. Phys. 10 (1985) 63MathSciNetCrossRefGoogle Scholar
  79. 79.
    A. Joseph, G. Letzter, Rosso's form and quantized Kac-Moody algebras, Preprint, 1993Google Scholar
  80. 80.
    V. Kac, Adv. Math. 30 (1978) 85CrossRefGoogle Scholar
  81. 81.
    V. Kac, Infinite-dimensional Lie Algebras, 3rd Edition, Cambridge University Press 1990Google Scholar
  82. 82.
    V. Kac, D. Kazhdan, Adv. Math. 34, 97–108 (1979)MathSciNetCrossRefGoogle Scholar
  83. 83.
    B. Kostant, S. Sternberg, Ann. Phys. 176 (1987) 49MathSciNetCrossRefGoogle Scholar
  84. 84.
    A. Kuniba, T. Nakanishi, J. Suzuki, Nucl. Phys. B356 (1991) 750–774MathSciNetCrossRefGoogle Scholar
  85. 85.
    B. Kupershmidt, P. Mathieu, Phys. Lett. 227B (1989) 245MathSciNetCrossRefGoogle Scholar
  86. 86.
    B. Kupershmidt, G. Wilson, Comm. Math. Phys. 81 (1981) 189–202MathSciNetCrossRefGoogle Scholar
  87. 87.
    B. Kupershmidt, G. Wilson, Inv. Math. 62 (1981) 403–436MathSciNetCrossRefGoogle Scholar
  88. 88.
    P. Lax, Lect. Appl. Math. 15 (1974) 85–96MathSciNetGoogle Scholar
  89. 89.
    A. LeClair, Preprint CLNS 93/1220, hep-th/9305110, May 1993Google Scholar
  90. 90.
    A.N. Leznov, M.V. Saveliev, Lett. Math. Phys. 3 (1979) 498–494Google Scholar
  91. 91.
    H. Li, Local systems of vertex operators, vertex superalgebras and modules, PreprintGoogle Scholar
  92. 92.
    G. Lusztig, Adv. Math. 70 (1988) 237MathSciNetCrossRefGoogle Scholar
  93. 93.
    S. MacLane, Homology, Springer 1963Google Scholar
  94. 94.
    F. Malikov, Int. J. Mod. Phys. A7, Supplement 1B (1992) 623–643CrossRefGoogle Scholar
  95. 95.
    Yu. I. Manin, J. Sov. Math. 11 (1978) 1–122CrossRefGoogle Scholar
  96. 96.
    D. McLaughlin, J. Math. Phys. 16 (1975) 96CrossRefGoogle Scholar
  97. 97.
    A. Mikhailov, M. Olshanetsky, V. Perelomov, Comm. Math. Phys. 79 (1981) 473–488MathSciNetCrossRefGoogle Scholar
  98. 98.
    W. Nahm, Int. J. Mod. Phys. A6 (1991) 2837–2845MathSciNetCrossRefGoogle Scholar
  99. 99.
    M. Niedermaier, Comm. Math. Phys. 148 (1992) 249–281MathSciNetCrossRefGoogle Scholar
  100. 100.
    M. Niedermaier, Preprint DESY 92-105 (1992)Google Scholar
  101. 101.
    M. Niedermaier, in “New Symmetry Principles in QFT”, eds. J. Fröhlich, e.a., 493–503, Plenum Press, 1991Google Scholar
  102. 102.
    D. Olive, N. Turok, Nucl. Phys. B220 (1983) 491MathSciNetCrossRefGoogle Scholar
  103. 103.
    D. Olive, N. Turok, Nucl. Phys. B265 (1985) 469MathSciNetCrossRefGoogle Scholar
  104. 104.
    D. Olive, N. Turok, J. Underwood, Preprint, April 1993Google Scholar
  105. 105.
    A. Pressley, G. Segal, Loop Groups, Clarendon Press, Oxford 1986zbMATHGoogle Scholar
  106. 106.
    N. Reshetikhin, F. Smirnov, Comm. Math. Phys. 131 (1990) 157–177MathSciNetCrossRefGoogle Scholar
  107. 107.
    A. Rocha-Caridi, Trans. AMS 262 (1980) 335MathSciNetGoogle Scholar
  108. 108.
    R. Sasaki, I. Yamanaka, Adv. Stud. in Pure Math. 16, 271–296 (1988)MathSciNetGoogle Scholar
  109. 109.
    V. Schechtman, A. Varchenko, in ICM-90 Satellite Conference Proceedings Algebraic Geometry and Analytic Geometry, 182–191, Springer 1991Google Scholar
  110. 110.
    V. Schechtman, Duke Math. J., Int. Math. Res. Not. 2 (1992) 39–49; 10 (1992) 307–315MathSciNetGoogle Scholar
  111. 111.
    G. Segal, Int. J. Mod. Phys. A6 (1991) 2859–2869CrossRefGoogle Scholar
  112. 112.
    E. Sklyanin, L. Takhtajan, L. Faddeev, Theor. Math. Phys. 40 (1980) 688CrossRefGoogle Scholar
  113. 113.
    L. Takhtadjian, L. Faddeev, Teor. Mat. Fiz. 21 (1974) 680Google Scholar
  114. 114.
    A. Varchenko, Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups, Adv. Ser. in Math. Phys. 21, World Scientific 1995Google Scholar
  115. 115.
    A. Volkov, Phys. Lett. 167A (1992) 345CrossRefGoogle Scholar
  116. 116.
    G. Wilson, Ergod. Th. and Dynam. Syst. 1 (1981) 361CrossRefGoogle Scholar
  117. 117.
    V.E. Zakharov, L.D. Faddeev, Funct. Anal. Appl. 5 (1971) 280–287CrossRefGoogle Scholar
  118. 118.
    A. Zamolodchikov, Al. Zamolodchikov, Ann. Phys. 120 (1979) 253–291MathSciNetCrossRefGoogle Scholar
  119. 119.
    A. Zamolodchikov, Theor. Math. Phys. 65 (1985) 1205MathSciNetCrossRefGoogle Scholar
  120. 120.
    A. Zamolodchikov, Adv. Stud. in Pure Math. 19, 641–674 (1989)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Boris Feigin
    • 1
    • 2
    • 3
  • Edward Frenkel
    • 1
    • 2
    • 3
  1. 1.Landau Institute for Theoretical PhysicsMoscowRussia
  2. 2.R.I.M.S.Kyoto UniversityKyotoJapan
  3. 3.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations