L2 vanishing theorems for positive line bundles and adjunction theory

  • Jean-Pierre Demailly
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1646)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AN54] Y. Akizuki and S. Nakano.—Note on Kodaira-Spencer’s proof of Lefschetz theorems, Proc. Jap. Acad., 30, (1954), 266–272.MathSciNetCrossRefMATHGoogle Scholar
  2. [AS94] U. Angehrn and Y. T. Siu.—Effective freeness and point separation for adjoint bundles, Preprint December 1994.Google Scholar
  3. [Aub78] Aubin, T..—Equations du type Monge-Ampère sur les variétés kählériennes compactes, C.R. Acad. Sci. Paris Ser. A, 283 (1976), 119–121; Bull. Sci. Math, 102 (1978), 63–95.MathSciNetMATHGoogle Scholar
  4. [AV65] A. Andreotti and E. Vesentini.—Carleman estimates for the Laplace-Beltrami equation in complex manifolds, Publ. Math. I.H.E.S., 25 (1965), 81–130.MathSciNetCrossRefMATHGoogle Scholar
  5. [BBS89] M. Beltrametti, A. Biancofiore and A. J. Sommese.—Projective n-folds of log-general type, I, Trans. Amer. Math. Soc., 314 (1989), 825–849.MathSciNetMATHGoogle Scholar
  6. [BeS93] M. Beltrametti and A. J. Sommese.—On k-jet ampleness, Complex Analysis and Geometry, Univ. Series in Math., edited by V. Ancona and A. Silva, Plenum Press, New-York, 1993, 355–376.Google Scholar
  7. [BFS89] M. Beltrametti, P. Francia and A. J. Sommese.—On Reider’s method and higher order embeddings, Duke Math. J., 58 (1989), 425–439.MathSciNetCrossRefMATHGoogle Scholar
  8. [Boc48] S. Bochner.—Curvature and Betti numbers (I) and (II), Ann. of Math., 49 (1948), 379–390; 50 (1949), 77–93.MathSciNetCrossRefMATHGoogle Scholar
  9. [Bom70] E. Bombieri.—Algebraic values of meromorphic maps, Invent. Math., 10 (1970), 267–287 and Addendum. Invent. Math. 11 (1970), 163–166.MathSciNetCrossRefMATHGoogle Scholar
  10. [Bom73] E. Bombieri.—Canonical models of surfaces of general type, Publ. Math. IHES, 42 (1973), 171–219.MathSciNetCrossRefMATHGoogle Scholar
  11. [Bon93] L. Bonavero.—Inégalités de Morse holomorphes singulières, Prépublication Université de Grenoble I, Institut Fourier, no 259, 1993.Google Scholar
  12. [BSk74] J. Briançon et H. Skoda.—Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de ℂ n, C. R. Acad. Sc. Paris, sér. A, 278 (1974), 949–951.MATHGoogle Scholar
  13. [BT76] E. Bedford and B. A. Taylor.—The Dirichlet problem for the complex Monge-Ampère equation, Invent. Math., 37 (1976), 1–44.MathSciNetCrossRefMATHGoogle Scholar
  14. [BT82] E. Bedford and B. A. Taylor.—A new capacity for plurisubharmonic functions, Acta Math., 149 (1982), 1–41.MathSciNetCrossRefMATHGoogle Scholar
  15. [Cam92] F. Campana.—Connexité rationnelle des variétés de Fano, Ann. Sci. Ecole Norm. Sup., 25 (1992), 539–545.MathSciNetGoogle Scholar
  16. [Cat88] F. Catanese.—Footnotes to a theorem of I. Reider, Proc. Intern. Conf. on Algebraic Geometry, (L’Aquila, June 1988), Lecture Notes in Math., Vol. 1417, Springer-Verlag, Berlin, 1990, 67–74.MATHGoogle Scholar
  17. [CLN69] S. S. Chern, H. I. Levine and L. Nirenberg.—Intrinsic norms on a complex manifold, Global Analysis (papers in honor of K. Kodaira), p. 119–139, Univ. of Tokyo Press, Tokyo, 1969.MATHGoogle Scholar
  18. [DeI87] P. Deligne and L. Illusie.—Relèvements modulo p 2 et décomposition du complexe de De Rham, Invent. Math., 89 (1987), 247–270.MathSciNetCrossRefMATHGoogle Scholar
  19. [Dem82a] J.-P. Demailly.—Sur les nombres de Lelong associés à l’image directe d’un courant positif fermé, Ann. Inst. Fourier (Grenoble), 32 (1982), 37–66.MathSciNetCrossRefMATHGoogle Scholar
  20. [Dem82b] J.-P. Demailly.—Estimations L 2 pour l’opérateur \(\bar \partial \) d’un fibré vectoriel holomorphe semi-positif au dessus d’une variété kählérienne complète, Ann. Sci. Ec. Norm. Sup., 15 (1982), 457–511.MathSciNetMATHGoogle Scholar
  21. [Dem85a] J.-P. Demailly.—Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Mém. Soc. Math. France (N.S.), 19 (1985), 1–124.MATHGoogle Scholar
  22. [Dem85b] J.-P. Demailly.—Champs magnétiques et inégalités de Morse pour la d"-cohomologie, Ann. Inst. Fourier (Grenoble), 35 (1985), 189–229.MathSciNetCrossRefMATHGoogle Scholar
  23. [Dem87] J.-P. Demailly.—Nombres de Lelong généralisés, théorèmes d’intégralité et d’analyticité, Acta Math., 159 (1987), 153–169.MathSciNetCrossRefMATHGoogle Scholar
  24. [Dem89] J.-P. Demailly.—Transcendental proof of a generalized Kawamata-Viehweg vanishing theorem, C. R. Acad. Sci. Paris Sér. I. Math., 309 (1989), 123–126 and; Proceedings of the Conference “Geometrical and algebraical aspects in several complex variables” held at Cetraro, Univ. della Calabria, June 1989.MathSciNetGoogle Scholar
  25. [Dem90] J.-P. Demailly.—Singular hermitian metrics on positive line bundles, Proc. Conf. Complex algebraic varieties (Bayreuth, April 2–6, 1990), edited by K. Hulek, T. Peternell, M. Schneider, F. Schreyer, Lecture Notes in Math., Vol. 1507, Springer-Verlag, Berlin, 1992.Google Scholar
  26. [Dem92] J.-P. Demailly.—Regularization of closed positive currents and Intersection Theory, J. Alg. Geom., 1 (1992), 361–409.MathSciNetMATHGoogle Scholar
  27. [Dem93a] J.-P. Demailly.—Monge-Ampère operators, Lelong numbers and intersection theory, Complex Analysis and Geometry, Univ. Series in Math., edited by V. Ancona and A. Silva, Plenum Press, New-York, 1993, 115–193.Google Scholar
  28. [Dem93b] J.-P. Demailly.—A numerical criterion for very ample line bundles, J. Differential Geom., 37 (1993), 323–374.MathSciNetMATHGoogle Scholar
  29. [Dem96] J.-P. Demailly.—Effective bounds for very ample line bundles, Invent. Math., 124 (1996), 243–261.MathSciNetCrossRefMATHGoogle Scholar
  30. [DPS94] J.-P. Demailly, Th. Peternell, M. Schneider.—Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geometry, 3 (1994), 295–345.MathSciNetMATHGoogle Scholar
  31. [Ein94] L. Ein.—Note on higher dimensional adjoint linear systems, preprint 1994, personal communication to the author.Google Scholar
  32. [EKL94] L. Ein, O. Küchle and R. Lazarsfeld.—Local positivity of ample line bundles, preprint August 1994, to appear.Google Scholar
  33. [EL92] L. Ein and R. Lazarsfeld.—Seshadri constants on smooth surfaces, Journées de Géométrie Algébrique d’Orsay, July 1992, Astérisque 282, 1993, 177–186.MathSciNetMATHGoogle Scholar
  34. [EL93] L. Ein and R. Lazarsfeld.—Global generation of pluricanonical and adjoint linear series on smooth projective threefolds, Jour. of Am. Math. Soc., 6 (1993), 875–903.MathSciNetCrossRefMATHGoogle Scholar
  35. [EM84] H. El Mir.—Sur le prolongement des courants positifs fermés, Acta Math., 153 (1984), 1–45.MathSciNetCrossRefMATHGoogle Scholar
  36. [Eno93] I. Enoki.—Kawamata-Viehweg vanishing theorem for compact Kähler manifolds, Einstein metrics and Yang-Mills connections (ed. T. Mabuchi, S. Mukai), Marcel Dekker, 1993, 59–68.Google Scholar
  37. [EV86] H. Esnault and E. Viehweg.—Logarithmic De Rham complexes and vanishing theorems, Invent. Math., 86 (1986), 161–194.MathSciNetCrossRefMATHGoogle Scholar
  38. [EV92] H. Esnault and E. Viehweg.—Lectures on vanishing theorems, DMV Seminar, Band 20, Birkhäuser Verlag, 1992.Google Scholar
  39. [Fed69] H. Federer.—Geometric measure theory, Springer Verlag, Vol. 153, Berlin, Heidelberg, New-York, 1969.MATHGoogle Scholar
  40. [FdB93] G. Fernández del Busto.—Bogomolov instability and Kawamata-Viehweg vanishing, preprint UCLA, 1993, to appear.Google Scholar
  41. [FdB94] G. Fernández del Busto.—UCLA Thesis, 1994.Google Scholar
  42. [Fuj83] T. Fujita.—Semipositive line bundles, J. Fac. Sci. Univ. of Tokyo, 30 (1983), 353–378.MathSciNetMATHGoogle Scholar
  43. [Fuj87] T. Fujita.—On polarized manifolds whose adjoint bundles are not semipositive, Algebraic Geometry, Sendai, 1985, Adv. Stud. in Pure Math., Vol. 10, North Holland, T. Oda (ed.), 1987, 167–178.Google Scholar
  44. [Fuj88] T. Fujita.—Problem list, Conference held at the Taniguchi Foundation, Katata, Japan, August 1988.Google Scholar
  45. [Fuj93] T. Fujita.—Remarks on Ein-Lazarsfeld criterion of spannedness of adjoint bundles of polarized threefolds, preprint 1993, to appear.Google Scholar
  46. [Gir76] J. Girbau.—Sur le théorème de Le Potier d’annulation de la cohomologie, C. R. Acad. Sci. Paris, série A, 283 (1976), 355–358.MathSciNetMATHGoogle Scholar
  47. [Gri69] P. A. Griffiths.—Hermitian differential geometry, Chern classes and positive vector bundles, Global Analysis, papers in honor of K. Kodaira, Princeton Univ. Press, Princeton, 1969, 181–251.MATHGoogle Scholar
  48. [GH78] P. A. Griffiths, J. Harris.—Principles of algebraic geometry, Wiley, New York, 1978.MATHGoogle Scholar
  49. [Har70] R. Hartshorne.—Ample subvarieties of algebraic varieties, Lecture Notes in Math., Vol. 156, Springer-Verlag, Berlin (1970).MATHGoogle Scholar
  50. [Hir64] H. Hironaka.—Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math., 79 (1964), 109–326.MathSciNetCrossRefMATHGoogle Scholar
  51. [Hör65] L. Hörmander.—L 2 estimates and existence theorems for the \(\bar \partial \) operator, Acta Math., 113 (1965), 89–152.MathSciNetCrossRefMATHGoogle Scholar
  52. [Hör66] L. Hörmander.—An introduction to Complex Analysis in several variables, 1966, 3rd edition, North-Holland Math. Libr., vol. 7, Amsterdam, London, 1990.MATHGoogle Scholar
  53. [Hov79] A. G. Hovanski.—Geometry of convex bodies and algebraic geometry, Uspehi Mat. Nauk, 34 (4) (1979), 160–161.Google Scholar
  54. [Kaw82] Y. Kawamata.—A generalization of Kodaira-Ramanujam’s vanishing theorem, Math. Ann., 261 (1982), 43–46.MathSciNetCrossRefMATHGoogle Scholar
  55. [Kaw84] Y. Kawamata.—The cone of curves of algebraic varieties, Ann. of Math., 119 (1984), 603–633.MathSciNetCrossRefMATHGoogle Scholar
  56. [Kis78] C. O. Kiselman.—The partial Legendre transformation for plurisubharmonic functions, Invent. Math., 49 (1978), 137–148.MathSciNetCrossRefMATHGoogle Scholar
  57. [Kis79] C. O. Kiselman.—Densité des fonctions plurisousharmoniques, Bull. Soc. Math. France, 107 (1979), 295–304.MathSciNetMATHGoogle Scholar
  58. [Kis84] C. O. Kiselman.—Sur la définition de l’opérateur de Monge-Ampère complexe, Analyse Complexe, Proceedings of the Journées Fermat (SMF), Toulouse, 1983, Lecture Notes in Math., Vol. 1094, Springer-Verlag, Berlin (1984), 139–150.MATHGoogle Scholar
  59. [KMM87] Y. Kawamata, K. Matsuda and K. Matsuki.—Introduction to the minimal problem, Algebraic Geometry, Sendai, 1985, Adv. Stud. in Pure Math., Vol. 10, T. Oda (ed.), North Holland, Amsterdam, 1987, 283–360.Google Scholar
  60. [KobO73] S. Kobayashi and T. Ochiai.—Characterisations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ., 13 (1973), 31–47.MathSciNetMATHGoogle Scholar
  61. [Kod53] K. Kodaira.—On a differential geometric method in the theory of analytic stacks, Proc. Nat. Acad. Sci. USA, 39 (1953), 1268–1273.MathSciNetCrossRefMATHGoogle Scholar
  62. [Kod54] K. Kodaira.—On Kähler varieties of restricted type, Ann. of Math., 60 (1954), 28–48.MathSciNetCrossRefMATHGoogle Scholar
  63. [Kol85] J. Kollár.—Vanishing theorems for cohomology groups, Algebraic Geometry, Bowdoin 1985, Proc. Symp. Pure Math., Vol. 46, 1987, 233–243.MathSciNetCrossRefMATHGoogle Scholar
  64. [Kol92] J. Kollár.—Effective basepoint freeness, Math. Ann., 296 (1993), 595–605.MathSciNetCrossRefMATHGoogle Scholar
  65. [KoM83] J. Kollár and T. Matsusaka.—Riemann-Roch type inequalities, Amer. J. of Math., 105 (1983), 229–252.MathSciNetCrossRefMATHGoogle Scholar
  66. [KoMM92] J. Kollár, Y. Miyaoka and S. Mori.—Rational connectedness and boundedness of Fano manifolds, J. Differential Geom., 36 (1992), 765–779.MathSciNetMATHGoogle Scholar
  67. [Laz93] R. Lazarsfeld, with the assistance of G. Fernández del Busto. Lectures on linear series, Park City, IAS Mathematics Series, Vol. 3, 1993.Google Scholar
  68. [Lel57] P. Lelong.—Intégration sur un ensemble analytique complexe, Bull. Soc. Math. France, 85 (1957), 239–262.MathSciNetMATHGoogle Scholar
  69. [Lel67] P. Lelong.—Fonctionnelles analytiques et fonctions entières (n variables), Sém. de Math. Supérieures, 6e session, été 1967, Presses Univ. Montréal 1968.Google Scholar
  70. [Lel69] P. Lelong.—Plurisubharmonic functions and positive differential forms, Gordon and Breach, New-York, and Dunod, Paris, 1969.MATHGoogle Scholar
  71. [LP75] J. Le Potier.—Annulation de la cohomologie à valeurs dans un fibré vectoriel holomorphe de rang quelconque, Math. Ann., 218 (1975), 35–53.MathSciNetCrossRefMATHGoogle Scholar
  72. [Man93] L. Manivel.—Un théorème de prolongement L 2 de sections holomorphes d’un fibré vectoriel, Math. Zeitschrift, 212 (1993), 107–122.MathSciNetCrossRefGoogle Scholar
  73. [Mat72] T. Matsusaka.—Polarized varieties with a given Hilbert polynomial, Amer. J. of Math., 94 (1972), 1027–1077.MathSciNetCrossRefMATHGoogle Scholar
  74. [Mor82] S. Mori.—Threefolds whose canonical bundles are not numerically effective, Ann. of Math., 116 (1982), 133–176.MathSciNetCrossRefMATHGoogle Scholar
  75. [Nad89] A. M. Nadel.—Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature, Proc. Nat. Acad. Sci. U.S.A., 86 (1989), 7299–7300 and Annals of Math., 132 (1990), 549–596.MathSciNetCrossRefMATHGoogle Scholar
  76. [Nak55] S. Nakano.—On complex analytic vector bundles, J. Math. Soc. Japan, 7 (1955), 1–12.MathSciNetCrossRefMATHGoogle Scholar
  77. [Ohs88] T. Ohsawa.—On the extension of L 2 holomorphic functions, II, Publ. RIMS, Kyoto Univ., 24 (1988), 265–275.MathSciNetCrossRefMATHGoogle Scholar
  78. [OT87] T. Ohsawa and K. Takegoshi.—On the extension of L 2 holomorphic functions, Math. Zeitschrift, 195 (1987), 197–204.MathSciNetCrossRefMATHGoogle Scholar
  79. [Rei88] I. Reider.—Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math., 127 (1988), 309–316.MathSciNetCrossRefMATHGoogle Scholar
  80. [Sak88] F. Sakai.—Reider-Serrano’s method on normal surfaces, Proc. Intern. Conf. on Algebraic Geometry, (L’Aquila, June 1988), Lecture Notes in Math., Vol. 1417, Springer-Verlag, Berlin, 1990, 301–319.MATHGoogle Scholar
  81. [Sch74] M. Schneider.—Eine einfacher Beweis des Verschwindungssatzes für positive holomorphe Vektorraumbündel, Manuscripta Math., 11 (1974), 95–101.MathSciNetCrossRefMATHGoogle Scholar
  82. [Ser54] J.-P. Serre.—Fonctions automorphes: quelques majorations dans le cas où X/G est compact, Sém. Cartan (1953–54) 2–1 à 2–9.Google Scholar
  83. [Ser55] J.-P. Serre.—Un théorème de dualité, Comment. Math., 29 (1955), 9–26.MathSciNetCrossRefMATHGoogle Scholar
  84. [Ser56] J.-P. Serre.—Géométrie algébrique et géométrie analytique Ann. Inst. Fourier (Grenoble), 6 (1956), 1–42.MathSciNetCrossRefMATHGoogle Scholar
  85. [ShSo85] B. Shiffman, A. J. Sommese.—Vanishing theorems on complex manifolds, Progress in Math. no 56, Birkhäuser, 1985.Google Scholar
  86. [Sib85] N. Sibony.—Quelques problèmes de prolongement de courants en analyse complexe, Duke Math. J., 52 (1985), 157–197.MathSciNetCrossRefMATHGoogle Scholar
  87. [Sie55] C. L. Siegel.—Meromorphic Funktionen auf kompakten Mannigfaltigkeiten, Nachrichten der Akademie der Wissenschaften in Göttingen, Math.-Phys. Klasse, 4 (1955), 71–77.MATHGoogle Scholar
  88. [Siu74] Y. T. Siu.—Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math., 27 (1974), 53–156.MathSciNetCrossRefMATHGoogle Scholar
  89. [Siu93] Y. T. Siu.—An effective Matsusaka big theorem, Ann. Inst. Fourier, 43 (1993), 1387–1405.MathSciNetCrossRefMATHGoogle Scholar
  90. [Siu94a] Y. T. Siu.—Effective Very Ampleness, Preprint 1994, to appear in Inventiones Math..Google Scholar
  91. [Siu94b] Y. T. Siu.—Very ampleness criterion of double adjoint of ample line bundles, Preprint 1994, to appear in Annals of Math. Studies, volume in honor of Gunning and Kohn, Princeton Univ. Press.Google Scholar
  92. [Sko72a] H. Skoda.—Sous-ensembles analytiques d’ordre fini ou infini dansn, Bull. Soc. Math. France, 100 (1972), 353–408.MathSciNetMATHGoogle Scholar
  93. [Sko72b] H. Skoda.—Applications des techniques L 2 à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids, Ann. Scient. Ec. Norm. Sup. 4e Série, 5 (1972), 545–579.MathSciNetMATHGoogle Scholar
  94. [Sko75] H. Skoda.—Estimations L 2 pour l’opérateur \(\bar \partial \) et applications arithmétiques, Séminaire P. Lelong (Analyse), année 1975/76, Lecture Notes in Math., Vol. 538, Springer-Verlag, Berlin (1977), 314–323.Google Scholar
  95. [Sko82] H. Skoda.—Prolongement des courants positifs fermés de masse finie, Invent. Math., 66 (1982), 361–376.MathSciNetCrossRefMATHGoogle Scholar
  96. [Som78] A. J. Sommese.—Submanifolds of abelian varieties, Math. Ann., 233 (1978), 229–256.MathSciNetCrossRefMATHGoogle Scholar
  97. [Sug87] K-I. Sugiyama.—A geometry of Kähler cones, preprint University of Tokyo in Hongo, September 1987.Google Scholar
  98. [Tei79] B. Teissier.—Du théorème de l’index de Hodge aux inégalités isopérimétriques, C. R. Acad. Sc. Paris, sér. A, 288 (29Janiver1979), 287–289.MathSciNetMATHGoogle Scholar
  99. [Tei82] B. Teissier.—Bonnesen-type inequalities in algebraic geometry, Sem. on Diff. Geom. edited by S.T. Yau, 1982, Princeton Univ. Press, 85–105.Google Scholar
  100. [Thi67] P. Thie.—The Lelong number of a point of a complex analytic set, Math. Annalen, 172 (1967), 269–312.MathSciNetCrossRefMATHGoogle Scholar
  101. [Tra95] S. Trapani.—Numerical criteria for the positivity of the difference of ample divisors, Math. Zeitschrift, 219 (1995), 387–401.MathSciNetCrossRefMATHGoogle Scholar
  102. [Vie82] E. Viehweg.—Vanishing theorems, J. Reine Angew. Math., 335 (1982), 1–8.MathSciNetMATHGoogle Scholar
  103. [Yau78] S. T. Yau.—On the Ricci curvature of a complex Kähler manifold and the complex Monge-Ampère equation I, Comm. Pure and Appl. Math., 31 (1978), 339–411.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Jean-Pierre Demailly
    • 1
  1. 1.GrenobleFrance

Personalised recommendations