Front propagation: Theory and applications

  • Panagiotis E. Souganidis
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1660)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AC] S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metal. 27 (1979), 1085–1095.CrossRefGoogle Scholar
  2. [AGLM] L. Alvarez, F. Guichard, P.-L. Lions and J.-M. Morel, Axioms and fundamental equations of image processing, Arch. Rat. Mech. Anal. 123 (1992), 199–257.MathSciNetCrossRefMATHGoogle Scholar
  3. [ACI] S. Angenent, D. L. Chopp and T. Ilmanen, A computed example of nonuniqueness of mean curvature flow is ℝ3, Comm PDE 20 (1995), 1937–1958.MathSciNetCrossRefGoogle Scholar
  4. [AIV] S. Angenent, T. Ilmanen and J. L. Velazquez, Nonuniqueness in geometric heat flows, in preparation.Google Scholar
  5. [AW] D. G. Aronson and H. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math. 30 (1978), 33–76.MathSciNetCrossRefMATHGoogle Scholar
  6. [Ba1] G. Barles, Remark on a flame propagation model, Rapport INRIA 464 (1985).Google Scholar
  7. [Ba2] G. Barles, Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations: a guided visit, Nonlinear Analysis TMA, in press.Google Scholar
  8. [BBS] G. Barles, L. Bronsard and P. E. Souganidis, Front propagation for reaction-diffusion equations of bistable type, Anal. Nonlin. 9 (1992), 479–506.MathSciNetMATHGoogle Scholar
  9. [BG] G. Barles and C. Georgelin, A simple proof of an approximation scheme for computing motion by mean curvature, SIAM J. Num. Anal. 32 (1995), 484–500.MathSciNetCrossRefMATHGoogle Scholar
  10. [BES] G. Barles, L. C. Evans and P. E. Souganidis, Wavefront propagation for reaction-diffusion systems of PDE, Duke Math. J. 61 (1990), 835–858.MathSciNetCrossRefMATHGoogle Scholar
  11. [BP] G. Barles and B. Perthame, Discontinuous solutions of deterministic optimal stopping time problems, M2AN 21 (1987), 557–579.MathSciNetMATHGoogle Scholar
  12. [BSS] G. Barles, H. M. Soner and P. E. Souganidis, Front propagation and phase field theory, SIAM J. Cont. Opt. 31 (1993), 439–469.MathSciNetCrossRefMATHGoogle Scholar
  13. [BS1] G. Barles and P. E. Souganidis, Convergence of approximation schemes for full nonlinear equations, Asymptotic Analysis 4 (1989), 271–283.MathSciNetMATHGoogle Scholar
  14. [BS2] G. Barles and P. E. Souganidis, A new approach to front propagation: Theory and Applications, Arch. Rat. Mech. Anal., to appear.Google Scholar
  15. [BS3] G. Barles and P. E. Souganidis, A remark on the asymptotic behavior of the solution of the KPP equation, C. R. Acad. Sci. Paris 319 Série I (1994), 679–684.MathSciNetMATHGoogle Scholar
  16. [BJ] E. N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi Equations with convex Hamiltonians, Comm. in PDE, in press.Google Scholar
  17. [BFRW] P. Bates, P. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phast transitions, preprint.Google Scholar
  18. [BP1] G. Bellettini and M. Paolini, Two examples of fattening for the mean curvature flow with a driving force, Mat. App. 5 (1994), 229–236.MathSciNetMATHGoogle Scholar
  19. [BP2] G. Bellettini and M. Paolini, Some results on minimal barriers in the sense of DeGiorgi to driven motion by mean curvature. preprint.Google Scholar
  20. [BP3] G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry, preprint.Google Scholar
  21. [Bo] L. Bonaventura, Motion by curvature in an interacting spin system, preprint.Google Scholar
  22. [Br] K. A. Brakle, The motion of a surface by its Mean Curvature, Princeton University Press, Princeton, NJ, (1978).Google Scholar
  23. [BrK] L. Bronsard and R. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau model, J. Diff. Eqs. 90 (1991), 211–237.MathSciNetCrossRefMATHGoogle Scholar
  24. [Ca1] G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rat. Mech. 92 (1986), 205–245.MathSciNetCrossRefMATHGoogle Scholar
  25. [Ca2] G. Caginalp, Mathematical models of phase boundaries, in Material Instabilities in continuum Mechanics and Related Mathematical Problems, ed. J. Ball, Clarendon Press, Oxford (1988), 35–52.Google Scholar
  26. [Ch] X.-Y. Chen, Generation and propagation of the interface for reaction-diffusion equation, J. Diff. Eqs. 96 (1992), 116–141.CrossRefGoogle Scholar
  27. [CGG] Y.-G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Diff. Geom. 33 (1991), 749–786.MathSciNetMATHGoogle Scholar
  28. [Cr] M. G. Crandall, CIME Lectures.Google Scholar
  29. [CIL] M. G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. AMS 27 (1992), 1–67.MathSciNetCrossRefMATHGoogle Scholar
  30. [CLS] M. G. Crandall, P.-L. Lions and P. E. Souganidis, Universal bounds and maximal solutions for certain evolution equations, Arch. Rat. Mech. Anal. 105 (1989), 163–190.MathSciNetCrossRefMATHGoogle Scholar
  31. [D] E. DeGiorgi, Some conjectures on flow by mean curvature, Proc. Capri Workshop, 1990, Benevento-Bruno-Sbardone editors.Google Scholar
  32. [DFL] A. DeMasi, P. Ferrari and J. Lebowitz, Reaction-diffusion equations for interacting particle systems, J. Stat. Phys. 44 (1986), 589–644.MathSciNetCrossRefMATHGoogle Scholar
  33. [DOPT1] A. DeMasi, E. Orlandi, E. Presutti and L. Triolo, Glauber evolution with Kač potentials: I. Mesoscopic and macroscopic limits, interface dynamics, Nonlinearity 7 (1994), 633–696; II. Fluctuations, preprint. III. Spinodal decomposition, preprint.MathSciNetCrossRefMATHGoogle Scholar
  34. [DOPT2] A. DeMasi, E. Orlandi, E. Presutti and L. Triolo, Motion by curvature by scaling non local evolution equations, J. Stat. Phys. 73 (1993), 543–570.MathSciNetCrossRefMATHGoogle Scholar
  35. [DOPT3] A. DeMasi, E. Orlandi, E. Presutti and L. Triolo, Stability of the interface in a model of phase separation, Proc. Royal Soc. Edinb. 124A (1994), 1013–1022.MathSciNetMATHGoogle Scholar
  36. [DP] A. DeMasi and E. Presutti, Mathematical Methods for Hydrodynamic Limits, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1991.CrossRefGoogle Scholar
  37. [DS] P. DeMottoni and M. Schatzman, Development of interfaces in ℝN, Proc. Royal Soc. Edinb. 116A (1990), 207–220.MathSciNetCrossRefGoogle Scholar
  38. [EMS1] P. F. Embid, A. Majda and P. E. Souganidis, Effective geometric front dynamics for premixed turbulent combustion with separated velocity scales, Combust. Sci. Tech. 103 (1994), 85–115.CrossRefGoogle Scholar
  39. [EMS2] P. F. Embid, A. Majda and P. E. Souganidis, Comparison of turbulent flame speeds from complete averaging and the G-equation, Physics Fluids 7 (1995), 2052–2060.MathSciNetCrossRefMATHGoogle Scholar
  40. [E1] L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Royal Soc. Edinb. 111A (1989), 359–375.MathSciNetCrossRefMATHGoogle Scholar
  41. [E2] L. C. Evans, CIME Lectures.Google Scholar
  42. [ESS] L. C. Evans, H. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math. 45 (1992), 1097–1123.MathSciNetCrossRefMATHGoogle Scholar
  43. [ESo1] L. C. Evans and P. E. Souganidis, Differential games and representation formulae for solutions of Hamilton-Jacobi-Isaacs equations, Ind. Univ. Math. J. 33 (1984), 773–797.MathSciNetCrossRefMATHGoogle Scholar
  44. [ESo2] L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain reaction-diffusion equations, Ind. Univ. Math. J. 38 (1989), 141–172.MathSciNetCrossRefMATHGoogle Scholar
  45. [ESo3] L. C. Evans and P. E. Souganidis, A PDE approach to certain large deviation problems for systems of parabolic equations, Ann. Inst. H. Poincaré, Anal. Non Lineáire 6 (Suppl.) (1994), 229–258.MathSciNetMATHGoogle Scholar
  46. [ESp] L. C. Evans and J. Spruck, Motion of level sets by mean curvature I, J. Diff. Geom. 33 (1991), 635–681.MathSciNetMATHGoogle Scholar
  47. [Fi] P. C. Fife, Nonlinear diffusive waves, CMBS Conf., Utah 1987, CMBS Conf. Series (1989).Google Scholar
  48. [FM] P. C. Fife and B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling solutions, Arch. Rat. Mech. An. 65 (1977), 335–361.MathSciNetCrossRefMATHGoogle Scholar
  49. [Fr1] M. Freidlin, Functional Integration and Partial Differential Equations, Ann. Math. Stud. 109, Princeton, NJ (1985), Princeton University Press.CrossRefMATHGoogle Scholar
  50. [Fr2] M. Freidlin, Limit theorems for large deviations of reaction-diffusion equation, Ann. Prob. 13 (1985), 639–675.MathSciNetCrossRefMATHGoogle Scholar
  51. [FL] M. Freidlin and Y. T. Lee, Wave front propagation for a class of space non-homogeneous reaction-diffusion systems, preprint.Google Scholar
  52. [Ga] J. Gärtner, Bistable reaction-diffusion equations and excitable media, Math. Nachr. 112 (1983), 125–152.MathSciNetCrossRefMATHGoogle Scholar
  53. [GGi] M.-H. Giga and Y. Giga, Geometric evolution by nonsmooth interfacial energy, Hokkaido Univ., preprint.Google Scholar
  54. [GGo] Y. Giga and S. Goto, Motion of hypersurfaces and geometric equations, J. Math. Soc. Japan 44 (1992), 99–111.MathSciNetCrossRefMATHGoogle Scholar
  55. [GGIS] Y. Giga, S. Goto, H. Ishii and M. H. Sato, Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains, Ind. Univ. Math. J. 40 (1992), 443–470.MathSciNetCrossRefMATHGoogle Scholar
  56. [GS] Y. Giga and M.-H. Sato, Generalized interface evolution with Neumann boundary condition, Proceedings Japan Acad. 67 Ser. A (1991), 263–266.MathSciNetCrossRefMATHGoogle Scholar
  57. [GT] D. Gilbarg and N. S. Trüdinger, Elliptic partial differential equations of second-order, Springer-Verlag, New York (1983).CrossRefMATHGoogle Scholar
  58. [Go] S. Goto, Generalized motion of hypersurfaces whose growth speed depends superlinearly on curvature tensor, J. Diff. Int. Eqs. 7 (1994), 323–343.MathSciNetMATHGoogle Scholar
  59. [Gu] M. E. Gurtin, Multiphase thermodynamics with interfacial structure. 1. Heat conduction and the capillary balance law, Arch. Rat. Mech. Anal. 104 (1988), 185–221.MathSciNetCrossRefGoogle Scholar
  60. [GSS] M. E. Gurtin, H. M. Soner and P. E. Souganidis, Anisotropic motion of an interface relaxed by the formation of infinitesimal wrinkles, J. Diff. Eqs. 119 (1995), 54–108.MathSciNetCrossRefMATHGoogle Scholar
  61. [Il1] T. Ilmanen, The level-set flow on a manifold, Proc. Symp. in Pure Math. 54 (1993), 193–204.MathSciNetCrossRefMATHGoogle Scholar
  62. [Il2] T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature, J. Diff. Geom. 38 (1993), 417–461.MathSciNetMATHGoogle Scholar
  63. [Is1] H. Ishii, Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets, Bull. Fac. Sci. Eng. Chuo Univ. 26 (1985), 5–24.MathSciNetMATHGoogle Scholar
  64. [Is2] H. Ishii, Parabolic pde with discontinuities and evolution of interfaces, preprint.Google Scholar
  65. [IPS] H. Ishii, G. Pires and P. E. Souganidis, Threshold dynamics and front propagation, preprint.Google Scholar
  66. [IS] H. Ishii and P. E. Souganidis, Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor, Tohoku Math. J. 47 (1995), 227–250.MathSciNetCrossRefMATHGoogle Scholar
  67. [JLS] R. Jensen, P.-L. Lions and P. E. Souganidis, A uniqueness result for viscosity solutions of second-order fully nonlinear pde’s, Proc. AMS 102 (1988), 975–978.MathSciNetCrossRefMATHGoogle Scholar
  68. [J] R. Jerrard, Fully nonlinear phase transitions and generalized mean curvature motions, Comm. PDE 20 (1995), 223–265.MathSciNetCrossRefGoogle Scholar
  69. [KKR] M. Katsoulakis, G. Kossioris and F. Reitich, Generalized motion by mean curvature with Neumann conditions and the Allen-Cahn model for phase transitions, J. Geom. Anal., to appear.Google Scholar
  70. [KS1] M. Katsoulakis and P. E. Souganidis, Interacting particle systems and generalized mean curvature evolution, Arch. Rat. Mech. Anal. 127 (1994), 133–157.MathSciNetCrossRefMATHGoogle Scholar
  71. [KS2] M. Katsoulakis and P. E. Souganidis, Generalized motion by mean curvature as a macroscopic limit of stochastic Ising models with long range interactions and Glauber dynamics, Comm. Math. Phys. 169 (1995), 61–97.MathSciNetCrossRefMATHGoogle Scholar
  72. [KS3] M. Katsoulakis and P. E. Souganidis, Stochastic Ising models and anisotropic front propagation, J. Stat. Phys., in press.Google Scholar
  73. [LP] J. Lebowitz and O. Penrose, Rigorous treatment of the Van der Waals Maxwell theory of the liquid vapour transition, J. Math. Phys. 98 (1966), 98–113.MathSciNetCrossRefMATHGoogle Scholar
  74. [Lig] T. Liggett, Interacting Particle Systems, Springer-Verlag, New York, 1985.CrossRefMATHGoogle Scholar
  75. [Lio] P.-L. Lions, Axiomatic derivation of image processing models, preprint.Google Scholar
  76. [LPV] P.-L. Lions, G. Papanicolaou and S. R. S. Varadhan, Homogenization of the Hamilton-Jacobi equations, preprint.Google Scholar
  77. [MS] A. Majda and P. E. Souganidis, Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales, Nonlinearity 7 (1994), 1–30.MathSciNetCrossRefMATHGoogle Scholar
  78. [NPV] R. H. Nochetto, M. Paolini and C. Verdi, Optimal interface error estimates for the mean curvature flow, Ann. Sc. Norm. Sup. Pisa 21 (1994), 193–212.MathSciNetMATHGoogle Scholar
  79. [OhS] M. Ohnuma and M. Sato, Singular degenerate parabolic equations with applications to geometric evolutions, J. Dif. Int. Eqs. 6 (1993), 1265–1280.MathSciNetMATHGoogle Scholar
  80. [OJK] T. Ohta, D. Jasnow and K. Kawasaki, Universal scaling in the motion of random intervaces, Phys. Rev. Lett. 49 (1982), 1223–1226.CrossRefGoogle Scholar
  81. [OsS] S. Osher and J. Sethian, Fronts moving with curvature dependent speed: Algorithms based on Hamilton-Jacobi equations, J. Comp. Phys. 79 (1988), 12–49.MathSciNetCrossRefMATHGoogle Scholar
  82. [RSK] J. Rubinstein, P. Sternberg and J. B. Keller, Fast reaction, slow diffusion and curve shortening, SIAM J. Appl. Math. 49 (1989), 116–133.MathSciNetCrossRefMATHGoogle Scholar
  83. [Son1] H. M. Soner, Motion of a set by the curvature of its boundary, J. Diff. Eqs. 101 (1993), 313–372.MathSciNetCrossRefMATHGoogle Scholar
  84. [Son2] H. M. Soner, Ginzburg-Landau equation and motion by mean curvature, I: Convergence, J. Geom. Anal., in press, II: J. Geom. Anal., in press.Google Scholar
  85. [SonS] H. M. Soner and P. E. Souganidis, Uniqueness and singularities of rotationally symmetric domains moving by mean curvature, Comm. PDE 18 (1993), 859–894.MathSciNetCrossRefMATHGoogle Scholar
  86. [Sor] P. Soravia, Generalized motion of a front along its normal direction: A differential games approach, preprint.Google Scholar
  87. [SorS] P. Soravia and P. E. Souganidis, Phase field theory for FitzHugh-Nagumo type systems, SIAM J. Math. Anal. 42 (1996), 1341–1359.MathSciNetCrossRefMATHGoogle Scholar
  88. [Sp1] H. Spohn, Large Scale Dynamics of Interacting Particles, Springer-Verlag (1991), New York.CrossRefMATHGoogle Scholar
  89. [Sp2] H. Spohn, Interface motion in models with stochastic dynamics, J. Stat. Phys. 71 (1993), 1081–1132.MathSciNetCrossRefMATHGoogle Scholar
  90. [X] J. X. Xin, Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media, in press.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Panagiotis E. Souganidis
    • 1
  1. 1.Department of MathematicsUniversity of Wisconsin-MadisonMadison

Personalised recommendations