Front propagation: Theory and applications

  • Panagiotis E. Souganidis
Part of the Lecture Notes in Mathematics book series (LNM, volume 1660)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AC] S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metal. 27 (1979), 1085–1095.CrossRefGoogle Scholar
  2. [AGLM] L. Alvarez, F. Guichard, P.-L. Lions and J.-M. Morel, Axioms and fundamental equations of image processing, Arch. Rat. Mech. Anal. 123 (1992), 199–257.MathSciNetCrossRefMATHGoogle Scholar
  3. [ACI] S. Angenent, D. L. Chopp and T. Ilmanen, A computed example of nonuniqueness of mean curvature flow is ℝ3, Comm PDE 20 (1995), 1937–1958.MathSciNetCrossRefGoogle Scholar
  4. [AIV] S. Angenent, T. Ilmanen and J. L. Velazquez, Nonuniqueness in geometric heat flows, in preparation.Google Scholar
  5. [AW] D. G. Aronson and H. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math. 30 (1978), 33–76.MathSciNetCrossRefMATHGoogle Scholar
  6. [Ba1] G. Barles, Remark on a flame propagation model, Rapport INRIA 464 (1985).Google Scholar
  7. [Ba2] G. Barles, Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations: a guided visit, Nonlinear Analysis TMA, in press.Google Scholar
  8. [BBS] G. Barles, L. Bronsard and P. E. Souganidis, Front propagation for reaction-diffusion equations of bistable type, Anal. Nonlin. 9 (1992), 479–506.MathSciNetMATHGoogle Scholar
  9. [BG] G. Barles and C. Georgelin, A simple proof of an approximation scheme for computing motion by mean curvature, SIAM J. Num. Anal. 32 (1995), 484–500.MathSciNetCrossRefMATHGoogle Scholar
  10. [BES] G. Barles, L. C. Evans and P. E. Souganidis, Wavefront propagation for reaction-diffusion systems of PDE, Duke Math. J. 61 (1990), 835–858.MathSciNetCrossRefMATHGoogle Scholar
  11. [BP] G. Barles and B. Perthame, Discontinuous solutions of deterministic optimal stopping time problems, M2AN 21 (1987), 557–579.MathSciNetMATHGoogle Scholar
  12. [BSS] G. Barles, H. M. Soner and P. E. Souganidis, Front propagation and phase field theory, SIAM J. Cont. Opt. 31 (1993), 439–469.MathSciNetCrossRefMATHGoogle Scholar
  13. [BS1] G. Barles and P. E. Souganidis, Convergence of approximation schemes for full nonlinear equations, Asymptotic Analysis 4 (1989), 271–283.MathSciNetMATHGoogle Scholar
  14. [BS2] G. Barles and P. E. Souganidis, A new approach to front propagation: Theory and Applications, Arch. Rat. Mech. Anal., to appear.Google Scholar
  15. [BS3] G. Barles and P. E. Souganidis, A remark on the asymptotic behavior of the solution of the KPP equation, C. R. Acad. Sci. Paris 319 Série I (1994), 679–684.MathSciNetMATHGoogle Scholar
  16. [BJ] E. N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi Equations with convex Hamiltonians, Comm. in PDE, in press.Google Scholar
  17. [BFRW] P. Bates, P. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phast transitions, preprint.Google Scholar
  18. [BP1] G. Bellettini and M. Paolini, Two examples of fattening for the mean curvature flow with a driving force, Mat. App. 5 (1994), 229–236.MathSciNetMATHGoogle Scholar
  19. [BP2] G. Bellettini and M. Paolini, Some results on minimal barriers in the sense of DeGiorgi to driven motion by mean curvature. preprint.Google Scholar
  20. [BP3] G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry, preprint.Google Scholar
  21. [Bo] L. Bonaventura, Motion by curvature in an interacting spin system, preprint.Google Scholar
  22. [Br] K. A. Brakle, The motion of a surface by its Mean Curvature, Princeton University Press, Princeton, NJ, (1978).Google Scholar
  23. [BrK] L. Bronsard and R. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau model, J. Diff. Eqs. 90 (1991), 211–237.MathSciNetCrossRefMATHGoogle Scholar
  24. [Ca1] G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rat. Mech. 92 (1986), 205–245.MathSciNetCrossRefMATHGoogle Scholar
  25. [Ca2] G. Caginalp, Mathematical models of phase boundaries, in Material Instabilities in continuum Mechanics and Related Mathematical Problems, ed. J. Ball, Clarendon Press, Oxford (1988), 35–52.Google Scholar
  26. [Ch] X.-Y. Chen, Generation and propagation of the interface for reaction-diffusion equation, J. Diff. Eqs. 96 (1992), 116–141.CrossRefGoogle Scholar
  27. [CGG] Y.-G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Diff. Geom. 33 (1991), 749–786.MathSciNetMATHGoogle Scholar
  28. [Cr] M. G. Crandall, CIME Lectures.Google Scholar
  29. [CIL] M. G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. AMS 27 (1992), 1–67.MathSciNetCrossRefMATHGoogle Scholar
  30. [CLS] M. G. Crandall, P.-L. Lions and P. E. Souganidis, Universal bounds and maximal solutions for certain evolution equations, Arch. Rat. Mech. Anal. 105 (1989), 163–190.MathSciNetCrossRefMATHGoogle Scholar
  31. [D] E. DeGiorgi, Some conjectures on flow by mean curvature, Proc. Capri Workshop, 1990, Benevento-Bruno-Sbardone editors.Google Scholar
  32. [DFL] A. DeMasi, P. Ferrari and J. Lebowitz, Reaction-diffusion equations for interacting particle systems, J. Stat. Phys. 44 (1986), 589–644.MathSciNetCrossRefMATHGoogle Scholar
  33. [DOPT1] A. DeMasi, E. Orlandi, E. Presutti and L. Triolo, Glauber evolution with Kač potentials: I. Mesoscopic and macroscopic limits, interface dynamics, Nonlinearity 7 (1994), 633–696; II. Fluctuations, preprint. III. Spinodal decomposition, preprint.MathSciNetCrossRefMATHGoogle Scholar
  34. [DOPT2] A. DeMasi, E. Orlandi, E. Presutti and L. Triolo, Motion by curvature by scaling non local evolution equations, J. Stat. Phys. 73 (1993), 543–570.MathSciNetCrossRefMATHGoogle Scholar
  35. [DOPT3] A. DeMasi, E. Orlandi, E. Presutti and L. Triolo, Stability of the interface in a model of phase separation, Proc. Royal Soc. Edinb. 124A (1994), 1013–1022.MathSciNetMATHGoogle Scholar
  36. [DP] A. DeMasi and E. Presutti, Mathematical Methods for Hydrodynamic Limits, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1991.CrossRefGoogle Scholar
  37. [DS] P. DeMottoni and M. Schatzman, Development of interfaces in ℝN, Proc. Royal Soc. Edinb. 116A (1990), 207–220.MathSciNetCrossRefGoogle Scholar
  38. [EMS1] P. F. Embid, A. Majda and P. E. Souganidis, Effective geometric front dynamics for premixed turbulent combustion with separated velocity scales, Combust. Sci. Tech. 103 (1994), 85–115.CrossRefGoogle Scholar
  39. [EMS2] P. F. Embid, A. Majda and P. E. Souganidis, Comparison of turbulent flame speeds from complete averaging and the G-equation, Physics Fluids 7 (1995), 2052–2060.MathSciNetCrossRefMATHGoogle Scholar
  40. [E1] L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Royal Soc. Edinb. 111A (1989), 359–375.MathSciNetCrossRefMATHGoogle Scholar
  41. [E2] L. C. Evans, CIME Lectures.Google Scholar
  42. [ESS] L. C. Evans, H. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math. 45 (1992), 1097–1123.MathSciNetCrossRefMATHGoogle Scholar
  43. [ESo1] L. C. Evans and P. E. Souganidis, Differential games and representation formulae for solutions of Hamilton-Jacobi-Isaacs equations, Ind. Univ. Math. J. 33 (1984), 773–797.MathSciNetCrossRefMATHGoogle Scholar
  44. [ESo2] L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain reaction-diffusion equations, Ind. Univ. Math. J. 38 (1989), 141–172.MathSciNetCrossRefMATHGoogle Scholar
  45. [ESo3] L. C. Evans and P. E. Souganidis, A PDE approach to certain large deviation problems for systems of parabolic equations, Ann. Inst. H. Poincaré, Anal. Non Lineáire 6 (Suppl.) (1994), 229–258.MathSciNetMATHGoogle Scholar
  46. [ESp] L. C. Evans and J. Spruck, Motion of level sets by mean curvature I, J. Diff. Geom. 33 (1991), 635–681.MathSciNetMATHGoogle Scholar
  47. [Fi] P. C. Fife, Nonlinear diffusive waves, CMBS Conf., Utah 1987, CMBS Conf. Series (1989).Google Scholar
  48. [FM] P. C. Fife and B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling solutions, Arch. Rat. Mech. An. 65 (1977), 335–361.MathSciNetCrossRefMATHGoogle Scholar
  49. [Fr1] M. Freidlin, Functional Integration and Partial Differential Equations, Ann. Math. Stud. 109, Princeton, NJ (1985), Princeton University Press.CrossRefMATHGoogle Scholar
  50. [Fr2] M. Freidlin, Limit theorems for large deviations of reaction-diffusion equation, Ann. Prob. 13 (1985), 639–675.MathSciNetCrossRefMATHGoogle Scholar
  51. [FL] M. Freidlin and Y. T. Lee, Wave front propagation for a class of space non-homogeneous reaction-diffusion systems, preprint.Google Scholar
  52. [Ga] J. Gärtner, Bistable reaction-diffusion equations and excitable media, Math. Nachr. 112 (1983), 125–152.MathSciNetCrossRefMATHGoogle Scholar
  53. [GGi] M.-H. Giga and Y. Giga, Geometric evolution by nonsmooth interfacial energy, Hokkaido Univ., preprint.Google Scholar
  54. [GGo] Y. Giga and S. Goto, Motion of hypersurfaces and geometric equations, J. Math. Soc. Japan 44 (1992), 99–111.MathSciNetCrossRefMATHGoogle Scholar
  55. [GGIS] Y. Giga, S. Goto, H. Ishii and M. H. Sato, Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains, Ind. Univ. Math. J. 40 (1992), 443–470.MathSciNetCrossRefMATHGoogle Scholar
  56. [GS] Y. Giga and M.-H. Sato, Generalized interface evolution with Neumann boundary condition, Proceedings Japan Acad. 67 Ser. A (1991), 263–266.MathSciNetCrossRefMATHGoogle Scholar
  57. [GT] D. Gilbarg and N. S. Trüdinger, Elliptic partial differential equations of second-order, Springer-Verlag, New York (1983).CrossRefMATHGoogle Scholar
  58. [Go] S. Goto, Generalized motion of hypersurfaces whose growth speed depends superlinearly on curvature tensor, J. Diff. Int. Eqs. 7 (1994), 323–343.MathSciNetMATHGoogle Scholar
  59. [Gu] M. E. Gurtin, Multiphase thermodynamics with interfacial structure. 1. Heat conduction and the capillary balance law, Arch. Rat. Mech. Anal. 104 (1988), 185–221.MathSciNetCrossRefGoogle Scholar
  60. [GSS] M. E. Gurtin, H. M. Soner and P. E. Souganidis, Anisotropic motion of an interface relaxed by the formation of infinitesimal wrinkles, J. Diff. Eqs. 119 (1995), 54–108.MathSciNetCrossRefMATHGoogle Scholar
  61. [Il1] T. Ilmanen, The level-set flow on a manifold, Proc. Symp. in Pure Math. 54 (1993), 193–204.MathSciNetCrossRefMATHGoogle Scholar
  62. [Il2] T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature, J. Diff. Geom. 38 (1993), 417–461.MathSciNetMATHGoogle Scholar
  63. [Is1] H. Ishii, Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets, Bull. Fac. Sci. Eng. Chuo Univ. 26 (1985), 5–24.MathSciNetMATHGoogle Scholar
  64. [Is2] H. Ishii, Parabolic pde with discontinuities and evolution of interfaces, preprint.Google Scholar
  65. [IPS] H. Ishii, G. Pires and P. E. Souganidis, Threshold dynamics and front propagation, preprint.Google Scholar
  66. [IS] H. Ishii and P. E. Souganidis, Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor, Tohoku Math. J. 47 (1995), 227–250.MathSciNetCrossRefMATHGoogle Scholar
  67. [JLS] R. Jensen, P.-L. Lions and P. E. Souganidis, A uniqueness result for viscosity solutions of second-order fully nonlinear pde’s, Proc. AMS 102 (1988), 975–978.MathSciNetCrossRefMATHGoogle Scholar
  68. [J] R. Jerrard, Fully nonlinear phase transitions and generalized mean curvature motions, Comm. PDE 20 (1995), 223–265.MathSciNetCrossRefGoogle Scholar
  69. [KKR] M. Katsoulakis, G. Kossioris and F. Reitich, Generalized motion by mean curvature with Neumann conditions and the Allen-Cahn model for phase transitions, J. Geom. Anal., to appear.Google Scholar
  70. [KS1] M. Katsoulakis and P. E. Souganidis, Interacting particle systems and generalized mean curvature evolution, Arch. Rat. Mech. Anal. 127 (1994), 133–157.MathSciNetCrossRefMATHGoogle Scholar
  71. [KS2] M. Katsoulakis and P. E. Souganidis, Generalized motion by mean curvature as a macroscopic limit of stochastic Ising models with long range interactions and Glauber dynamics, Comm. Math. Phys. 169 (1995), 61–97.MathSciNetCrossRefMATHGoogle Scholar
  72. [KS3] M. Katsoulakis and P. E. Souganidis, Stochastic Ising models and anisotropic front propagation, J. Stat. Phys., in press.Google Scholar
  73. [LP] J. Lebowitz and O. Penrose, Rigorous treatment of the Van der Waals Maxwell theory of the liquid vapour transition, J. Math. Phys. 98 (1966), 98–113.MathSciNetCrossRefMATHGoogle Scholar
  74. [Lig] T. Liggett, Interacting Particle Systems, Springer-Verlag, New York, 1985.CrossRefMATHGoogle Scholar
  75. [Lio] P.-L. Lions, Axiomatic derivation of image processing models, preprint.Google Scholar
  76. [LPV] P.-L. Lions, G. Papanicolaou and S. R. S. Varadhan, Homogenization of the Hamilton-Jacobi equations, preprint.Google Scholar
  77. [MS] A. Majda and P. E. Souganidis, Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales, Nonlinearity 7 (1994), 1–30.MathSciNetCrossRefMATHGoogle Scholar
  78. [NPV] R. H. Nochetto, M. Paolini and C. Verdi, Optimal interface error estimates for the mean curvature flow, Ann. Sc. Norm. Sup. Pisa 21 (1994), 193–212.MathSciNetMATHGoogle Scholar
  79. [OhS] M. Ohnuma and M. Sato, Singular degenerate parabolic equations with applications to geometric evolutions, J. Dif. Int. Eqs. 6 (1993), 1265–1280.MathSciNetMATHGoogle Scholar
  80. [OJK] T. Ohta, D. Jasnow and K. Kawasaki, Universal scaling in the motion of random intervaces, Phys. Rev. Lett. 49 (1982), 1223–1226.CrossRefGoogle Scholar
  81. [OsS] S. Osher and J. Sethian, Fronts moving with curvature dependent speed: Algorithms based on Hamilton-Jacobi equations, J. Comp. Phys. 79 (1988), 12–49.MathSciNetCrossRefMATHGoogle Scholar
  82. [RSK] J. Rubinstein, P. Sternberg and J. B. Keller, Fast reaction, slow diffusion and curve shortening, SIAM J. Appl. Math. 49 (1989), 116–133.MathSciNetCrossRefMATHGoogle Scholar
  83. [Son1] H. M. Soner, Motion of a set by the curvature of its boundary, J. Diff. Eqs. 101 (1993), 313–372.MathSciNetCrossRefMATHGoogle Scholar
  84. [Son2] H. M. Soner, Ginzburg-Landau equation and motion by mean curvature, I: Convergence, J. Geom. Anal., in press, II: J. Geom. Anal., in press.Google Scholar
  85. [SonS] H. M. Soner and P. E. Souganidis, Uniqueness and singularities of rotationally symmetric domains moving by mean curvature, Comm. PDE 18 (1993), 859–894.MathSciNetCrossRefMATHGoogle Scholar
  86. [Sor] P. Soravia, Generalized motion of a front along its normal direction: A differential games approach, preprint.Google Scholar
  87. [SorS] P. Soravia and P. E. Souganidis, Phase field theory for FitzHugh-Nagumo type systems, SIAM J. Math. Anal. 42 (1996), 1341–1359.MathSciNetCrossRefMATHGoogle Scholar
  88. [Sp1] H. Spohn, Large Scale Dynamics of Interacting Particles, Springer-Verlag (1991), New York.CrossRefMATHGoogle Scholar
  89. [Sp2] H. Spohn, Interface motion in models with stochastic dynamics, J. Stat. Phys. 71 (1993), 1081–1132.MathSciNetCrossRefMATHGoogle Scholar
  90. [X] J. X. Xin, Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media, in press.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Panagiotis E. Souganidis
    • 1
  1. 1.Department of MathematicsUniversity of Wisconsin-MadisonMadison

Personalised recommendations