[AC] S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening,

*Acta Metal.*
**27** (1979), 1085–1095.

CrossRef[AGLM] L. Alvarez, F. Guichard, P.-L. Lions and J.-M. Morel, Axioms and fundamental equations of image processing,

*Arch. Rat. Mech. Anal.*
**123** (1992), 199–257.

MathSciNetCrossRefMATH[ACI] S. Angenent, D. L. Chopp and T. Ilmanen, A computed example of nonuniqueness of mean curvature flow is ℝ

^{3},

*Comm PDE*
**20** (1995), 1937–1958.

MathSciNetCrossRef[AIV] S. Angenent, T. Ilmanen and J. L. Velazquez, Nonuniqueness in geometric heat flows, in preparation.

[AW] D. G. Aronson and H. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,

*Adv. Math.*
**30** (1978), 33–76.

MathSciNetCrossRefMATH[Ba1] G. Barles, Remark on a flame propagation model, Rapport INRIA 464 (1985).

[Ba2] G. Barles, Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations: a guided visit, *Nonlinear Analysis TMA*, in press.

[BBS] G. Barles, L. Bronsard and P. E. Souganidis, Front propagation for reaction-diffusion equations of bistable type,

*Anal. Nonlin.*
**9** (1992), 479–506.

MathSciNetMATH[BG] G. Barles and C. Georgelin, A simple proof of an approximation scheme for computing motion by mean curvature,

*SIAM J. Num. Anal.*
**32** (1995), 484–500.

MathSciNetCrossRefMATH[BES] G. Barles, L. C. Evans and P. E. Souganidis, Wavefront propagation for reaction-diffusion systems of PDE,

*Duke Math. J.*
**61** (1990), 835–858.

MathSciNetCrossRefMATH[BP] G. Barles and B. Perthame, Discontinuous solutions of deterministic optimal stopping time problems,

*M2AN*
**21** (1987), 557–579.

MathSciNetMATH[BSS] G. Barles, H. M. Soner and P. E. Souganidis, Front propagation and phase field theory,

*SIAM J. Cont. Opt.*
**31** (1993), 439–469.

MathSciNetCrossRefMATH[BS1] G. Barles and P. E. Souganidis, Convergence of approximation schemes for full nonlinear equations,

*Asymptotic Analysis*
**4** (1989), 271–283.

MathSciNetMATH[BS2] G. Barles and P. E. Souganidis, A new approach to front propagation: Theory and Applications, *Arch. Rat. Mech. Anal.*, to appear.

[BS3] G. Barles and P. E. Souganidis, A remark on the asymptotic behavior of the solution of the KPP equation,

*C. R. Acad. Sci. Paris*
**319 Série I** (1994), 679–684.

MathSciNetMATH[BJ] E. N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi Equations with convex Hamiltonians, *Comm. in PDE*, in press.

[BFRW] P. Bates, P. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phast transitions, preprint.

[BP1] G. Bellettini and M. Paolini, Two examples of fattening for the mean curvature flow with a driving force,

*Mat. App.*
**5** (1994), 229–236.

MathSciNetMATH[BP2] G. Bellettini and M. Paolini, Some results on minimal barriers in the sense of DeGiorgi to driven motion by mean curvature. preprint.

[BP3] G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry, preprint.

[Bo] L. Bonaventura, Motion by curvature in an interacting spin system, preprint.

[Br] K. A. Brakle, *The motion of a surface by its Mean Curvature*, Princeton University Press, Princeton, NJ, (1978).

[BrK] L. Bronsard and R. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau model,

*J. Diff. Eqs.*
**90** (1991), 211–237.

MathSciNetCrossRefMATH[Ca1] G. Caginalp, An analysis of a phase field model of a free boundary,

*Arch. Rat. Mech.*
**92** (1986), 205–245.

MathSciNetCrossRefMATH[Ca2] G. Caginalp, Mathematical models of phase boundaries, in *Material Instabilities in continuum Mechanics and Related Mathematical Problems*, ed. J. Ball, Clarendon Press, Oxford (1988), 35–52.

[Ch] X.-Y. Chen, Generation and propagation of the interface for reaction-diffusion equation,

*J. Diff. Eqs.*
**96** (1992), 116–141.

CrossRef[CGG] Y.-G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations,

*J. Diff. Geom.*
**33** (1991), 749–786.

MathSciNetMATH[Cr] M. G. Crandall, CIME Lectures.

[CIL] M. G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations,

*Bull. AMS*
**27** (1992), 1–67.

MathSciNetCrossRefMATH[CLS] M. G. Crandall, P.-L. Lions and P. E. Souganidis, Universal bounds and maximal solutions for certain evolution equations,

*Arch. Rat. Mech. Anal.*
**105** (1989), 163–190.

MathSciNetCrossRefMATH[D] E. DeGiorgi, Some conjectures on flow by mean curvature, *Proc. Capri Workshop*, 1990, Benevento-Bruno-Sbardone editors.

[DFL] A. DeMasi, P. Ferrari and J. Lebowitz, Reaction-diffusion equations for interacting particle systems,

*J. Stat. Phys.*
**44** (1986), 589–644.

MathSciNetCrossRefMATH[DOPT1] A. DeMasi, E. Orlandi, E. Presutti and L. Triolo, Glauber evolution with Kač potentials: I. Mesoscopic and macroscopic limits, interface dynamics,

*Nonlinearity*
**7** (1994), 633–696; II. Fluctuations, preprint. III. Spinodal decomposition, preprint.

MathSciNetCrossRefMATH[DOPT2] A. DeMasi, E. Orlandi, E. Presutti and L. Triolo, Motion by curvature by scaling non local evolution equations,

*J. Stat. Phys.*
**73** (1993), 543–570.

MathSciNetCrossRefMATH[DOPT3] A. DeMasi, E. Orlandi, E. Presutti and L. Triolo, Stability of the interface in a model of phase separation,

*Proc. Royal Soc. Edinb.*
**124A** (1994), 1013–1022.

MathSciNetMATH[DP] A. DeMasi and E. Presutti,

*Mathematical Methods for Hydrodynamic Limits*, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1991.

CrossRef[DS] P. DeMottoni and M. Schatzman, Development of interfaces in ℝ

^{
N
},

*Proc. Royal Soc. Edinb.*
**116A** (1990), 207–220.

MathSciNetCrossRef[EMS1] P. F. Embid, A. Majda and P. E. Souganidis, Effective geometric front dynamics for premixed turbulent combustion with separated velocity scales,

*Combust. Sci. Tech.*
**103** (1994), 85–115.

CrossRef[EMS2] P. F. Embid, A. Majda and P. E. Souganidis, Comparison of turbulent flame speeds from complete averaging and the

*G*-equation,

*Physics Fluids*
**7** (1995), 2052–2060.

MathSciNetCrossRefMATH[E1] L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE,

*Proc. Royal Soc. Edinb.*
**111A** (1989), 359–375.

MathSciNetCrossRefMATH[E2] L. C. Evans, CIME Lectures.

[ESS] L. C. Evans, H. M. Soner and P. E. Souganidis, Phase transitions and generalized motion by mean curvature,

*Comm. Pure Appl. Math.*
**45** (1992), 1097–1123.

MathSciNetCrossRefMATH[ESo1] L. C. Evans and P. E. Souganidis, Differential games and representation formulae for solutions of Hamilton-Jacobi-Isaacs equations,

*Ind. Univ. Math. J.*
**33** (1984), 773–797.

MathSciNetCrossRefMATH[ESo2] L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain reaction-diffusion equations,

*Ind. Univ. Math. J.*
**38** (1989), 141–172.

MathSciNetCrossRefMATH[ESo3] L. C. Evans and P. E. Souganidis, A PDE approach to certain large deviation problems for systems of parabolic equations,

*Ann. Inst. H. Poincaré, Anal. Non Lineáire*
**6** (Suppl.) (1994), 229–258.

MathSciNetMATH[ESp] L. C. Evans and J. Spruck, Motion of level sets by mean curvature I,

*J. Diff. Geom.*
**33** (1991), 635–681.

MathSciNetMATH[Fi] P. C. Fife, Nonlinear diffusive waves, CMBS Conf., Utah 1987, CMBS Conf. Series (1989).

[FM] P. C. Fife and B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling solutions,

*Arch. Rat. Mech. An.*
**65** (1977), 335–361.

MathSciNetCrossRefMATH[Fr1] M. Freidlin,

*Functional Integration and Partial Differential Equations*, Ann. Math. Stud.

**109**, Princeton, NJ (1985), Princeton University Press.

CrossRefMATH[Fr2] M. Freidlin, Limit theorems for large deviations of reaction-diffusion equation,

*Ann. Prob.*
**13** (1985), 639–675.

MathSciNetCrossRefMATH[FL] M. Freidlin and Y. T. Lee, Wave front propagation for a class of space non-homogeneous reaction-diffusion systems, preprint.

[Ga] J. Gärtner, Bistable reaction-diffusion equations and excitable media,

*Math. Nachr.*
**112** (1983), 125–152.

MathSciNetCrossRefMATH[GGi] M.-H. Giga and Y. Giga, Geometric evolution by nonsmooth interfacial energy, Hokkaido Univ., preprint.

[GGo] Y. Giga and S. Goto, Motion of hypersurfaces and geometric equations,

*J. Math. Soc. Japan*
**44** (1992), 99–111.

MathSciNetCrossRefMATH[GGIS] Y. Giga, S. Goto, H. Ishii and M. H. Sato, Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains,

*Ind. Univ. Math. J.*
**40** (1992), 443–470.

MathSciNetCrossRefMATH[GS] Y. Giga and M.-H. Sato, Generalized interface evolution with Neumann boundary condition,

*Proceedings Japan Acad.*
**67 Ser. A** (1991), 263–266.

MathSciNetCrossRefMATH[GT] D. Gilbarg and N. S. Trüdinger,

*Elliptic partial differential equations of second-order*, Springer-Verlag, New York (1983).

CrossRefMATH[Go] S. Goto, Generalized motion of hypersurfaces whose growth speed depends superlinearly on curvature tensor,

*J. Diff. Int. Eqs.*
**7** (1994), 323–343.

MathSciNetMATH[Gu] M. E. Gurtin, Multiphase thermodynamics with interfacial structure. 1. Heat conduction and the capillary balance law,

*Arch. Rat. Mech. Anal.*
**104** (1988), 185–221.

MathSciNetCrossRef[GSS] M. E. Gurtin, H. M. Soner and P. E. Souganidis, Anisotropic motion of an interface relaxed by the formation of infinitesimal wrinkles,

*J. Diff. Eqs.*
**119** (1995), 54–108.

MathSciNetCrossRefMATH[Il1] T. Ilmanen, The level-set flow on a manifold,

*Proc. Symp. in Pure Math.*
**54** (1993), 193–204.

MathSciNetCrossRefMATH[Il2] T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature,

*J. Diff. Geom.*
**38** (1993), 417–461.

MathSciNetMATH[Is1] H. Ishii, Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets,

*Bull. Fac. Sci. Eng. Chuo Univ.*
**26** (1985), 5–24.

MathSciNetMATH[Is2] H. Ishii, Parabolic pde with discontinuities and evolution of interfaces, preprint.

[IPS] H. Ishii, G. Pires and P. E. Souganidis, Threshold dynamics and front propagation, preprint.

[IS] H. Ishii and P. E. Souganidis, Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor,

*Tohoku Math. J.*
**47** (1995), 227–250.

MathSciNetCrossRefMATH[JLS] R. Jensen, P.-L. Lions and P. E. Souganidis, A uniqueness result for viscosity solutions of second-order fully nonlinear pde’s,

*Proc. AMS*
**102** (1988), 975–978.

MathSciNetCrossRefMATH[J] R. Jerrard, Fully nonlinear phase transitions and generalized mean curvature motions,

*Comm. PDE*
**20** (1995), 223–265.

MathSciNetCrossRef[KKR] M. Katsoulakis, G. Kossioris and F. Reitich, Generalized motion by mean curvature with Neumann conditions and the Allen-Cahn model for phase transitions, *J. Geom. Anal.*, to appear.

[KS1] M. Katsoulakis and P. E. Souganidis, Interacting particle systems and generalized mean curvature evolution,

*Arch. Rat. Mech. Anal.*
**127** (1994), 133–157.

MathSciNetCrossRefMATH[KS2] M. Katsoulakis and P. E. Souganidis, Generalized motion by mean curvature as a macroscopic limit of stochastic Ising models with long range interactions and Glauber dynamics,

*Comm. Math. Phys.*
**169** (1995), 61–97.

MathSciNetCrossRefMATH[KS3] M. Katsoulakis and P. E. Souganidis, Stochastic Ising models and anisotropic front propagation, *J. Stat. Phys.*, in press.

[LP] J. Lebowitz and O. Penrose, Rigorous treatment of the Van der Waals Maxwell theory of the liquid vapour transition,

*J. Math. Phys.*
**98** (1966), 98–113.

MathSciNetCrossRefMATH[Lig] T. Liggett,

*Interacting Particle Systems*, Springer-Verlag, New York, 1985.

CrossRefMATH[Lio] P.-L. Lions, Axiomatic derivation of image processing models, preprint.

[LPV] P.-L. Lions, G. Papanicolaou and S. R. S. Varadhan, Homogenization of the Hamilton-Jacobi equations, preprint.

[MS] A. Majda and P. E. Souganidis, Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales,

*Nonlinearity*
**7** (1994), 1–30.

MathSciNetCrossRefMATH[NPV] R. H. Nochetto, M. Paolini and C. Verdi, Optimal interface error estimates for the mean curvature flow,

*Ann. Sc. Norm. Sup. Pisa*
**21** (1994), 193–212.

MathSciNetMATH[OhS] M. Ohnuma and M. Sato, Singular degenerate parabolic equations with applications to geometric evolutions,

*J. Dif. Int. Eqs.*
**6** (1993), 1265–1280.

MathSciNetMATH[OJK] T. Ohta, D. Jasnow and K. Kawasaki, Universal scaling in the motion of random intervaces,

*Phys. Rev. Lett.*
**49** (1982), 1223–1226.

CrossRef[OsS] S. Osher and J. Sethian, Fronts moving with curvature dependent speed: Algorithms based on Hamilton-Jacobi equations,

*J. Comp. Phys.*
**79** (1988), 12–49.

MathSciNetCrossRefMATH[RSK] J. Rubinstein, P. Sternberg and J. B. Keller, Fast reaction, slow diffusion and curve shortening,

*SIAM J. Appl. Math.*
**49** (1989), 116–133.

MathSciNetCrossRefMATH[Son1] H. M. Soner, Motion of a set by the curvature of its boundary,

*J. Diff. Eqs.*
**101** (1993), 313–372.

MathSciNetCrossRefMATH[Son2] H. M. Soner, Ginzburg-Landau equation and motion by mean curvature, I: Convergence, *J. Geom. Anal.*, in press, II: *J. Geom. Anal.*, in press.

[SonS] H. M. Soner and P. E. Souganidis, Uniqueness and singularities of rotationally symmetric domains moving by mean curvature,

*Comm. PDE*
**18** (1993), 859–894.

MathSciNetCrossRefMATH[Sor] P. Soravia, Generalized motion of a front along its normal direction: A differential games approach, preprint.

[SorS] P. Soravia and P. E. Souganidis, Phase field theory for FitzHugh-Nagumo type systems,

*SIAM J. Math. Anal.*
**42** (1996), 1341–1359.

MathSciNetCrossRefMATH[Sp1] H. Spohn,

*Large Scale Dynamics of Interacting Particles*, Springer-Verlag (1991), New York.

CrossRefMATH[Sp2] H. Spohn, Interface motion in models with stochastic dynamics,

*J. Stat. Phys.*
**71** (1993), 1081–1132.

MathSciNetCrossRefMATH[X] J. X. Xin, Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media, in press.