Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer

Part of the Lecture Notes in Mathematics book series (LNM, volume 1716)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ca] Cassels, J.W.S., Diophantine equations with special reference to elliptic curves, J. London Math. Soc. 41 (1966) 193–291.MathSciNetCrossRefMATHGoogle Scholar
  2. [Co] Coates, J., Infinite descent on elliptic curves with complex multiplication. In: Arithmetic and Geometry, M. Artin and J. Tate, eds., Prog. in Math. 35, Boston: Birkhäuser (1983) 107–137.CrossRefGoogle Scholar
  3. [CW1] Coates, J., Wiles, A., On the conjecture of Birch and Swinnerton-Dyer, Inventiones math. 39 (1977) 223–251.MathSciNetCrossRefMATHGoogle Scholar
  4. [CW2] Coates, J., Wiles, A., On p-adic L-functions and elliptic units. J. Austral. Math. Soc. (ser. A) 26 (1978) 1–25.MathSciNetCrossRefMATHGoogle Scholar
  5. [Col] Coleman, R., Division values in local fields, Inventiones math. 53 (1979) 91–116.MathSciNetCrossRefMATHGoogle Scholar
  6. [dS] de Shalit, E., Iwasawa theory of elliptic curves with complex multiplication, Perspectives in Math. 3, Orlando: Academic Press (1987).MATHGoogle Scholar
  7. [GS] Goldstein, C., Schappacher, N., Séries d’Eisenstein et fonctions L de courbes elliptiques à multiplication complexe, J. für die reine und angew. Math. 327 (1981) 184–218.MathSciNetMATHGoogle Scholar
  8. [Gr] Greenberg, R., On the structure of certain Galois groups, Inventiones math. 47 (1978) 85–99.MathSciNetCrossRefMATHGoogle Scholar
  9. [Iw] Iwasawa, K., On Z -extensions of algebraic number fields Annals of Math. (2) 98 (1973) 246–326.MathSciNetCrossRefMATHGoogle Scholar
  10. [Ko] Kolyvagin, V. A., Euler systems. In: The Grothendieck Festschrift (Vol. II), P. Cartier et al., eds., Prog. in Math 87, Boston: Birkhäuser (1990) 435–483.Google Scholar
  11. [La] Lang, S., Elliptic Functions, Reading: Addison Wesley (1973).MATHGoogle Scholar
  12. [PR] Perrin-Riou, B., Arithmétique des courbes elliptiques et théorie d’Iwasawa, Bull. Soc. Math. France, Mémoire Nouvelle série 17 1984.Google Scholar
  13. [Ro] Robert, G., Unités elliptiques, Bull. Soc. Math. France, Mémoire 36 (1973).Google Scholar
  14. [Ru1] Rubin, K., The main conjecture. Appendix to: Cyclotomic fields I and II, S. Lang, Graduate Texts in Math. 121, New York: Springer-Verlag (1990) 397–419.Google Scholar
  15. [Ru2] Rubin, K., The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Inventiones Math. 103 (1991) 25–68.MathSciNetCrossRefMATHGoogle Scholar
  16. [Se] Serre, J.-P., Classes des corps cyclotomiques (d’après K. Iwasawa), Séminaire Bourbaki exposé 174, December 1958, In: Séminaire Bourbaki vol. 5, Paris: Société de France (1995) 83–93.Google Scholar
  17. [ST] Serre, J.-P., Tate, J., Good reduction of abelian varieties, Ann. of Math. 88 (1968) 492–517.MathSciNetCrossRefMATHGoogle Scholar
  18. [Sh] Shimura, G., Introduction to the arithmetic theory of automorphic functions, Princeton: Princeton Univ. Press (1971).MATHGoogle Scholar
  19. [Si] Silverman, J., The arithmetic of elliptic curves, Graduate Texts in Math. 106, New York: Springer-Verlag (1986).MATHGoogle Scholar
  20. [Ta] Tate, J., Algorithm for determining the type of a singular fiber in an elliptic pencil. In: Modular functions of one variable IV, Lecture Notes in Math. 476, New York: Springer-Verlag (1975) 33–52.CrossRefGoogle Scholar
  21. [We] Weil, A., Number theory. An approach through history. From Hammurapi to Legendre, Boston: Birkhäuser (1984).MATHGoogle Scholar
  22. [Wil] Wiles, A., Higher explicit reciprocity laws, Annals of Math. 107 (1978) 235–254.MathSciNetCrossRefMATHGoogle Scholar
  23. [Win] Wintenberger, J.-P., Structure galoisienne de limites projectives d’unités locales, Comp. Math. 42 (1981) 89–103.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  1. 1.Department of MathematicsOhio State UniversityColumbusUSA

Personalised recommendations