Advertisement

Iwasawa theory for elliptic curves

  • Ralph Greenberg
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1716)

Keywords

Exact Sequence Elliptic Curve Elliptic Curf Finite Index Residue Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B-D-G-P] K. Barré-Sirieix, G. Diaz, F. Gramain, G. Philibert, Une preuve de la conjecture de Mahler-Manin, Invent. Math. 124 (1996), 1–9.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Be] M. Bertolini, Selmer groups and Heegner points in anticyclotomic ℤp-extensions, Compositio Math. 99 (1995), 153–182.MathSciNetzbMATHGoogle Scholar
  3. [BeDa1] M. Bertolini, H. Darmon, Heegner points on Mumford-Tate curves, Invent. Math. 126 (1996), 413–456.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [BeDa2] M. Bertolini, H. Darmon, Nontriviality of families of Heegner points and ranks of Selmer groups over anticyclotomic towers, Journal of the Ramanujan Math. Society 13 (1998), 15–25.MathSciNetzbMATHGoogle Scholar
  5. [B-G-S] D. Bernardi, C. Goldstein, N. Stephens, Notes p-adiques sur les courbes elliptiques, J. reine angew. Math. 351 (1984), 129–170.MathSciNetzbMATHGoogle Scholar
  6. [CoMc] J. Coates, G. McConnel, Iwasawa theory of modular elliptic curves of analytic rank at most 1, J. London Math. Soc. 50 (1994), 243–269.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [CoGr] J. Coates, R. Greenberg, Kummer theory for abelian varieties over local fields, Invent. Math. 124 (1996), 129–174.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [CoSc] J. Coates, C.-G. Schmidt, Iwasawa theory for the symmetric square of an elliptic curve, J. reine angew. Math. 375/376 (1987), 104–156.MathSciNetzbMATHGoogle Scholar
  9. [Cre] J.E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press (1992).Google Scholar
  10. [D] F. Diamond, On deformation rings and Hecke rings, Ann. of Math. 144 (1996), 137–166.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [F] E.C. Friedman, Ideal class groups in basic ℤp1×...×ℤps-extensions of abelian number fields, Invent. Math. 65 (1982), 425–440.CrossRefGoogle Scholar
  12. [FeWa] B. Ferrero, L.C. Washington, The Iwasawa invariant μp vanishes for abelian number fields, Ann. of Math. 109 (1979), 377–395.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [Gr1] R. Greenberg, On a certain l-adic representation, Invent. Math. 21 (1973), 117–124.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [Gr2] R. Greenberg, Iwasawa theory for p-adic representations, Advanced Studies in Pure Mathematics 17 (1989), 97–137.MathSciNetzbMATHGoogle Scholar
  15. [Gr3] R. Greenberg, Iwasawa theory for motives, LMS Lecture Notes Series 153 (1991), 211–233.MathSciNetzbMATHGoogle Scholar
  16. [Gr4] R. Greenberg, Trivial zeroes of p-adic L-functions, Contemporary Math. 165 (1994), 149–174.CrossRefzbMATHGoogle Scholar
  17. [Gr5] R. Greenberg, The structure of Selmer groups, Proc. Nat. Acad. Sci. 94 (1997), 11125–11128.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [Gr6] R. Greenberg, Iwasawa theory for p-adic representations II, in preparation.Google Scholar
  19. [Grva] R. Greenberg, V. Vatsal, On the Iwasawa invariants of elliptic curves, in preparation.Google Scholar
  20. [Gu1] L. Guo, On a generalization of Tate dualities with application to Iwasawa theory, Compositio Math. 85 (1993), 125–161.MathSciNetzbMATHGoogle Scholar
  21. [Gu2] L. Guo, General Selmer groups and critical values of Hecke L-functions, Math. Ann. 297 (1993), 221–233.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [HaMa] Y. Hachimori, K. Matsuno, On finite Λ-submodules of Selmer groups of elliptic curves, to appear in Proc. Amer. Math. Soc. Google Scholar
  23. [Im] H. Imai, A remark on the rational points of abelian varieties with values in cyclotomic ℤp-extensions, Proc. Japan Acad. 51, (1975), 12–16.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [Jo] J.W. Jones, Iwasawa L-functions for multiplicative abelian varities, Duke Math. J. 59 (1989), 399–420.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [K] K. Kramer, Elliptic curves with non-trivial 2-adic Iwasawa μ-invariant, to appear in Acta Arithmetica.Google Scholar
  26. [Man] Yu.I. Manin, Cyclotomic fields and modular curves, Russian Math. Surveys 26 no. 6 (1971), 7–78.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [Maz1] B. Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183–266.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [Maz2] B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129–162.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [Maz3] B. Mazur, On the arithmetic of special values of L-functions, Invent. Math. 55 (1979), 207–240.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [Maz4] B. Mazur, Modular curves and arithmetic, Proceedings of the International Congress of Mathematicians, Warszawa (1983), 185–211.Google Scholar
  31. [M-SwD] B. Mazur, P. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math. 25 (1974), 1–61.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [M-T-T] B. Mazur, J. Tate, J. Teitelbaum, On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), 1–48.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [Mi] J.S. Milne, Arithmetic Duality Theorems, Academic Press (1986).Google Scholar
  34. [Mo] P. Monsky, Generalizing the Birch-Stephens theorem, I. Modular curves, Math. Zeit. 221 (1996), 415–420.MathSciNetzbMATHGoogle Scholar
  35. [Pe1] B. Perrin-Riou, Arithmétique des courbes elliptiques et théorie d’Iwasawa, Mémoire Soc. Math. France 17 (1984).Google Scholar
  36. [Pe2] B. Perrin-Riou, Variation de la fonction L p-adique par isogénie, Advanced Studies in Pure Mathematics 17 (1989), 347–358.MathSciNetzbMATHGoogle Scholar
  37. [Pe3] B. Perrin-Riou, Points de Heegner et dérivées de fonctions L p-adiques, Invent. Math. 89 (1987), 455–510.MathSciNetCrossRefzbMATHGoogle Scholar
  38. [Pe4] B. Perrin-Riou, Théorie d’Iwasawa p-adique locale et globale, Invent. Math. 99 (1990), 247–292.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [Ri] K.A. Ribet, Torsion points of abelian varieties in cyclotomic extensions, Enseign. Math. 27 (1981), 315–319.MathSciNetGoogle Scholar
  40. [Ro] D.E. Rohrlich, On L-functions of elliptic curves and cyclotomic towers, Invent. Math. 75 (1984), 409–423.MathSciNetCrossRefzbMATHGoogle Scholar
  41. [Ru1] K. Rubin, On the main conjecture of Iwasawa theory for imaginary quadratic fields, Invent. Math. 93 (1988), 701–713.MathSciNetCrossRefzbMATHGoogle Scholar
  42. [Ru2] K. Rubin, The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), 25–68.MathSciNetCrossRefzbMATHGoogle Scholar
  43. [R-W] K. Rubin, A. Wiles, Mordell-Weil groups of elliptic curves over cyclotomic fields, Progress in Mathematics 26 (1982), 237–254.MathSciNetCrossRefzbMATHGoogle Scholar
  44. [Sch1] P. Schneider, Iwasawa L-functions of varieties over algebraic number fields, A first approach, Invent. Math. 71 (1983), 251–293.MathSciNetCrossRefzbMATHGoogle Scholar
  45. [Sch2] P. Schneider, p-adic height pairings II, Invent. Math. 79 (1985), 329–374.MathSciNetCrossRefzbMATHGoogle Scholar
  46. [Sch3] P. Schneider, The μ-invariant of isogenies, Journal of the Indian Math. Soc. 52 (1987), 159–170.MathSciNetzbMATHGoogle Scholar
  47. [Se1] J.-P. Serre, Abelian l-adic Representations and Elliptic Curves, W.A. Benjamin (1968).Google Scholar
  48. [Se2] J.-P. Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics 5, Springer-Verlag (1964).Google Scholar
  49. [Si] J. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, Springer-Verlag (1986).Google Scholar
  50. [St] G. Stevens, Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math. 98 (1989), 75–106.MathSciNetCrossRefzbMATHGoogle Scholar
  51. [Ta] J. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179–206.MathSciNetCrossRefzbMATHGoogle Scholar
  52. [Wa1] L.C. Washington, The non-p-part of the class number in a cyclotomic ℤp-extension, Invent. Math. 49 (1978), 87–97.MathSciNetCrossRefzbMATHGoogle Scholar
  53. [Wa2] L.C. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer-Verlag (1982).Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Ralph Greenberg
    • 1
  1. 1.University of WashingtonUSA

Personalised recommendations